Skip to main content
Log in

Heterogeneous kinetics of NaBH4 hydrolysis catalyzed by Co/TiO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The article presents the results of experiments of the hydrolysis process with a Co/TiO2 catalyst and homogeneous experiments in an aqueous solution of sodium borohydride (NaBH4) aimed to the test the developed model of heterogeneous processes. In data processing of catalytic experiments, we use the method of their correction to exclude the rate of homogeneous hydrolysis. We consider the adsorption/desorption model, in which two types of particles can be adsorbed, i.e. water molecules and BH4·H+ complexes. As a result of the analysis of possible irreversible heterogeneous reactions and the experimental dependences of the hydrogen generation rates, it is concluded that the main hydrolysis reaction on the Co/TiO2 catalyst occurs upon collisions of BH4 ion from the solution with adsorbed water molecules. We observed the growth of the specific rate of hydrogen generation with an increase in the degree of NaBH4 decomposition in all experiments with this catalyst. Two hypotheses have been suggested to explain this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu BH, Li ZP (2009) A review: hydrogen generation from borohydride hydrolysis reaction. J Power Sources 187:527–534. https://doi.org/10.1016/j.bej.2013.01.012

    Article  CAS  Google Scholar 

  2. Walter JC, Zurawski A, Montgomery D et al (2008) Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J Power Sources 179:335–339. https://doi.org/10.1016/j.jpowsour.2007.12.006

    Article  CAS  Google Scholar 

  3. Demirci UB, Akdim O, Jerome A et al (2010) Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell. Fuel Cells 10:335–350. https://doi.org/10.1002/fuce.200800171

    Article  CAS  Google Scholar 

  4. Brack P, Dann SE, Wijayantha KGU (2015) Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions. Energy Sci Eng 3:174–188. https://doi.org/10.1002/ese3.67

    Article  CAS  Google Scholar 

  5. Abdelhamid HN (2020) A review on hydrogen generation from the hydrolysis of sodium borohydride. Int J Hydrogen Energy 46:726–765. https://doi.org/10.1016/j.ijhydene.2020.09.186

    Article  CAS  Google Scholar 

  6. Ruslan N, Yahya MS, Siddique MdNI et al (2022) Review on magnesium hydride and sodium borohydride hydrolysis for hydrogen production. Crystals 12:1376–1390. https://doi.org/10.3390/cryst12101376

    Article  CAS  Google Scholar 

  7. Hung AJ, Tsai SF, Hsu YY et al (2008) Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation. Int J Hydrogen Energy 33:6205–6215. https://doi.org/10.1016/j.ijhydene.2008.07.109

    Article  CAS  Google Scholar 

  8. Zhang J, Zheng Y, Gore JP et al (2007) 1 kWe sodium borohydride hydrogen generation system Part II: Reactor modeling. J Power Sources 170:150–159. https://doi.org/10.1016/j.jpowsour.2007.03.025

    Article  CAS  Google Scholar 

  9. Retnamma R, Novais AQ, Rangel CM (2011) Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: a review. Int J Hydrogen Energy 36:9772–9790. https://doi.org/10.1016/j.ijhydene.2011.04.223

    Article  CAS  Google Scholar 

  10. Pena-Alonso R, Sicurelli A, Callone E et al (2007) A picoscale catalyst for hydrogen generation from NaBH4 for fuel cell. J Power Sources 165:315–323. https://doi.org/10.1016/j.jpowsour.2006.12.043

    Article  CAS  Google Scholar 

  11. Kaur A, Gangacharyulu D, Bajpai PK (2019) Kinetic studies of hydrolysis reaction of NaBH4 with γ-Al2O3 nanoparticles as catalyst promoter and CoCl2 as catalyst. Braz J Chem Eng 36:929–939. https://doi.org/10.1590/0104-6632.20190362s20180290

    Article  CAS  Google Scholar 

  12. Gilani N, Pasikhani JV, Akbari M et al (2019) Hydrogen evolution from catalytic hydrolysis of NaBH4: comparative study between the catalytic activity of TiO2 nanotubes with various arrangements. J Nanostruct 9:587–599. https://doi.org/10.22052/JNS.2019.03.020

    Article  CAS  Google Scholar 

  13. Zhang J, Delgass W, Fisher T (2007) Kinetics of Ru-catalyzed sodium borohydride hydrolysis. J Power Sources 164:772–781. https://doi.org/10.1016/j.jpowsour.2006.11.002

    Article  CAS  Google Scholar 

  14. Andrieux J, Demirci UB (2011) Langmuir-Hinshelwood kinetic model to capture the cobalt nanoparticles-catalyzed hydrolysis of sodium borohydride over a wide temperature range. Catal Today 170:13–19. https://doi.org/10.1016/j.cattod.2011.01.019

    Article  CAS  Google Scholar 

  15. Demirci UB, Miele P (2014) Reaction mechanisms of the hydrolysis of sodium borohydride: a discussion focusing on cobalt-based catalysts. C R Chim 17:707–716. https://doi.org/10.1016/j.crci.2014.01.012

    Article  CAS  Google Scholar 

  16. Simagina VI, Netskina OV, Komova OV et al (2012) Progress in the catalysts for H2 generation from NaBH4 fuel. Curr Top Catal 10:147–165

    CAS  Google Scholar 

  17. Wei Y, Wang Y, Wei L et al (2018) Highly efficient and reactivated electrocatalyst of ruthenium electrodeposited on nickel foam for hydrogen evolution from NaBH4 alkaline solution. Int J Hydrogen Energy 43:592–600. https://doi.org/10.1016/j.ijhydene.2017.11.010

    Article  CAS  Google Scholar 

  18. Xu J, Du X, Wei Q et al (2020) Efficient hydrolysis of sodium borohydride by Co-B supported on nitrogen-doped carbon. Chem Sel 5:6683–6690. https://doi.org/10.1002/slct.201904818

    Article  CAS  Google Scholar 

  19. Farrag M, Ali GAM (2022) Hydrogen generation of single alloy Pd/Pt quantum dots over Co3O4 nanoparticles via the hydrolysis of sodium borohydride at room temperature. Sci Rep 12:17040. https://doi.org/10.1038/s41598-022-21064-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raza W, Ahmad K, Kim H (2021) Fabrication of defective graphene oxide for efficient hydrogen production and enhanced 4-nitro-phenol reduction. Nanotechnology 32:495404. https://doi.org/10.1088/1361-6528/ac1dd4

    Article  CAS  Google Scholar 

  21. Oshchepkov A, Bonnefont A, Maranzana G et al (2022) Direct borohydride fuel cells: a selected review of their reaction mechanisms, electrocatalysts and influence of operating parameters on their performance. Curr Opinion Electrochem 32:100883. https://doi.org/10.1016/j.coelec.2021.100883

    Article  CAS  Google Scholar 

  22. Olu PY, Bonnefont A, Braesch G et al (2017) Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes – experimental and modelling insights. J Power Sources 375:300–309. https://doi.org/10.1016/j.jpowsour.2017.07.061

    Article  CAS  Google Scholar 

  23. Minkina VG, Shabunya SI, Kalinin VI et al (2022) Hydrogen generation from hydrolysis of concentrated NaBH4 solutions under adiabatic conditions. Int J Hydrogen Energy 47:21772–21781. https://doi.org/10.1016/j.ijhydene.2022.05.006

    Article  CAS  Google Scholar 

  24. Xu DY, Dai P, Liu XM et al (2008) Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution. J Power Sources 182:616–620. https://doi.org/10.1016/j.jpowsour.2008.04.018

    Article  CAS  Google Scholar 

  25. Bennici S, Yu H, Obeid E et al (2011) Highly active heteropolyanions supported Co catalysts for fast hydrogen generation in NaBH4 hydrolysis. Int J Hydrogen Energy 36:7431–7442. https://doi.org/10.1016/j.ijhydene.2011.03.148

    Article  CAS  Google Scholar 

  26. Marchionni A, Bevilacqua M, Filippi J et al (2015) High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix. J Power Sources 299:391–397. https://doi.org/10.1016/j.jpowsour.2015.09.006

    Article  CAS  Google Scholar 

  27. Shi LM, Xie W, Jian ZY et al (2019) Graphene modified Co–B catalysts for rapid hydrogen production from NaBH4 hydrolysis. Int J Hydrogen Energy 44:17954–17962. https://doi.org/10.1016/j.ijhydene.2019.05.104

    Article  CAS  Google Scholar 

  28. Zhang HM, Feng XL, Cheng LN et al (2019) Non-noble Co anchored on nanoporous graphene oxide, as an efficient and long-life catalyst for hydrogen generation from sodium borohydride. Coll Surf A 563:112–119. https://doi.org/10.1016/j.colsurfa.2018.12.002

    Article  CAS  Google Scholar 

  29. Zhang X, Zhang Q, Xu B et al (2020) Efficient hydrogen generation from the NaBH4 hydrolysis by cobalt-based catalysts: positive roles of sulfur-containing salts. ACS Appl Mater Interfaces 12:9376–9386. https://doi.org/10.1021/acsami.9b22645

    Article  CAS  PubMed  Google Scholar 

  30. Xu JN, Du XX, Wei QL et al (2020) Efficient hydrolysis of sodium borohydride by Co-B supported on nitrogen-doped carbon. Chem Sel 5:6683–6690. https://doi.org/10.1002/slct.201904818

    Article  CAS  Google Scholar 

  31. Altaf CT, Colak TO, Minkina VG et al (2022) Effect of titanium dioxide support for cobalt nanoparticle catalysts for hydrogen generation from sodium borohydride hydrolysis. Catal Lett. https://doi.org/10.1007/s10562-022-04215-9

    Article  Google Scholar 

  32. Delmas J, Laversenne L, Rougeaux I et al (2011) Improved hydrogen storage capacity through hydrolysis of solid NaBH4 catalyzed with cobalt boride. Int J Hydrogen Energy 36:2145–2153. https://doi.org/10.1016/j.ijhydene.2010.11.036

    Article  CAS  Google Scholar 

  33. Li F, Li Q, Kim H (2012) CoB/open-CNTs catalysts for hydrogen generation from alkaline NaBH4 solution. Chem Eng J 210:316–324. https://doi.org/10.1016/j.cej.2012.08.102

    Article  CAS  Google Scholar 

  34. Baydaroglu F, Ozdemir E, Hasimoglu A (2014) An effective synthesis route for improving the catalytic activity of carbon-supported CoeB catalyst for hydrogen generation through hydrolysis of NaBH4. Int J Hydrogen Energy 39:1516–1522. https://doi.org/10.1016/j.ijhydene.2013.04.111

    Article  CAS  Google Scholar 

  35. Li Y, Zhang Y, Cai Y et al (2015) Effects of composite catalyst Co2B/TiO2 on hydrolysis of NaBH4. Open Mater Sci J 9:60–63. https://doi.org/10.2174/1874088X01509010060

    Article  CAS  Google Scholar 

  36. Singh PK, Das T (2017) Generation of hydrogen from NaBH4 solution using metal-boride (CoB, FeB, NiB) catalysts. Int J Hydrogen Energy 42:29360–29369. https://doi.org/10.1016/j.ijhydene.2017.10.030

    Article  CAS  Google Scholar 

  37. Xu J, Du X, Wei Q et al (2020) Efficient Hydrolysis of Sodium Borohydride by Co-B Supported on Nitrogen-doped Carbon. ChemistrySelect 5:6683–6690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina G. Minkina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabunya, S.I., Minkina, V.G., Kalinin, V.I. et al. Heterogeneous kinetics of NaBH4 hydrolysis catalyzed by Co/TiO2. Reac Kinet Mech Cat 136, 1839–1857 (2023). https://doi.org/10.1007/s11144-023-02450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02450-8

Keywords

Navigation