Skip to main content
Log in

On the reaction of Co(II) cobalamin with hydrogen peroxide

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Co(II) cobalamin (Co(IICbl) is easily oxidized to Co(III) by a variety of oxidizing agents; with hydrogen peroxide, this reaction entails oxygenation of the corrin ring to species known as stable yellow corrinoids (SYC), as described by Makarov and co-workers. Reported here is a stopped-flow UV–Vis analysis of the initial steps of the Co(II)Cbl with hydrogen peroxide, prior to formation of SYC. The earliest recorded spectra in this reaction, 2 ms after mixing, consist of a mixture of Co(II) and Co(III)-aqua cobalamin. Direct formation of SYC is observed from this stage, with no evidence of inner-sphere interaction between Co(II) and the oxidant, hydrogen peroxide. Outer-sphere monoelectronic oxidation of Co(II) by H2O2 with concerted formation of a hydroxyl radical is therefore proposed as the source of subsequent SYC formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lehene M, Plesa D, Ionescu-Zinca S et al (2021) Adduct of aquacobalamin with hydrogen peroxide. Inorg Chem 60:12681–12684. https://doi.org/10.1021/acs.inorgchem.1c01483

    Article  CAS  PubMed  Google Scholar 

  2. Carrascoza F, Surducan M, Eriksson LA, Silaghi-Dumitrescu R (2020) Interaction of cobalt and iron hydroperoxo bleomycin with deoxyribonucleic acid (DNA): dynamic vs. electronic structure considerations. Inorganica Chim Acta 509:119682. https://doi.org/10.1016/j.ica.2020.119682

    Article  CAS  Google Scholar 

  3. Silaghi-Dumitrescu R (2013) Redox activation of small molecules at biological metal centers. Struct Bond 150:97–118

    Article  CAS  Google Scholar 

  4. Zhang Y, Gascon JA (2008) QM/MM investigation of structure and spectroscopic properties of a vanadium-containing peroxidase. J Inorg Biochem 102:1684–1690

    Article  CAS  PubMed  Google Scholar 

  5. de Visser SP, Kumar D, Neumann R, Shaik S (2004) Computer-generated high-valent iron–oxo and manganese–oxo species with polyoxometalate ligands: how do they compare with the iron–oxo active species of heme enzymes? Angew Chem Int Ed Engl 43:5661–5665

    Article  PubMed  Google Scholar 

  6. Hersleth HP, Ryde U, Rydberg P et al (2006) Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases. J Inorg Biochem 100:460–476

    Article  CAS  PubMed  Google Scholar 

  7. Ensing B, Buda F, Blochl P, Baerends EJ (2001) Chemical involvement of solvent water molecules in elementary steps of the Fenton oxidation reaction. Angew Chemie—Int Ed 40:2893–2895

    Article  CAS  Google Scholar 

  8. Sadrzadeh SM, Graf E, Panter SS et al (1984) Hemoglobin. A biological fenton reagent. J Biol Chem 259:14354–14356

    Article  CAS  PubMed  Google Scholar 

  9. Buda F, Ensing B, Gribnau MC, Baerends EJ (2001) DFT study of the active intermediate in the Fenton reaction. Chemistry (Easton) 7:2775–2783

    CAS  Google Scholar 

  10. Sharpe MA, Robb SJ, Clark JB (2003) nitric oxide and Fenton/Haber-Weiss chemistry: nitric oxide is a potent antioxidant at physiological concentrations. J Neurochem 87:386–394

    Article  CAS  PubMed  Google Scholar 

  11. Marcus SR, Dharmalingam M (2013) Iron, oxidative stress and diabetes. In: Preedy, Victor R (eds) Diabetes: oxidative stress and dietary antioxidants. Academic Press, Amsterdam, pp 51–64. https://linkinghub.elsevier.com/retrieve/pii/B978012

  12. Dereven’kov IA, Makarov SV, Shpagilev NI et al (2017) Studies on reaction of glutathionylcobalamin with hypochlorite. evidence of protective action of glutathionyl-ligand against corrin modification by hypochlorite. Biometals 30:57–764. https://doi.org/10.1007/s10534-017-0044-8

    Article  CAS  Google Scholar 

  13. Dassanayake RS, Farhath MM, Shelley JT et al (2016) Kinetic studies on the reaction of cob(II)alamin with hypochlorous acid: evidence for one electron oxidation of the metal center and corrin ring destruction. J Inorg Biochem 163:81–87. https://doi.org/10.1016/j.jinorgbio.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  14. Salnikov DS, Makarov SV, Koifman OI (2021) The radical: versus ionic mechanisms of reduced cobalamin inactivation by tert -butyl hydroperoxide and hydrogen peroxide in aqueous solution. New J Chem 45:535–543. https://doi.org/10.1039/d0nj04231e

    Article  CAS  Google Scholar 

  15. Johns PW, Das A, Kuil EM et al (2015) Cocoa polyphenols accelerate vitamin B12 degradation in heated chocolate milk. Int J Food Sci Technol 50:421–430. https://doi.org/10.1111/ijfs.12632

    Article  CAS  Google Scholar 

  16. Nazhat NB, Golding BT, Johnson GRA, Jones P (1989) Destruction of vitamin B12 by reaction with ascorbate: the role of hydrogen peroxide and the oxidation state of cobalt. J Inorg Biochem 36:75–81. https://doi.org/10.1016/0162-0134(89)80014-5

    Article  CAS  Google Scholar 

  17. Nichol AW, Hendry I, Morell DB (1969) Mechanism of formation of sulphhaemoglobin. Biochim Biophys Acta 156:97–108

    Article  Google Scholar 

  18. Oliver J, Brittain T (1983) A comparison between the ease of haemoglobin oxidation and modification by sulphide. Comp Biochem Physiol 76B:579–583

    CAS  Google Scholar 

  19. Pietri R, Roman-Morales E, Lopez-Garriga J (2011) Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal 15:393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Román-Morales E, Pietri R, Ramos-Santana B et al (2010) Structural determinants for the formation of sulfhemeprotein complexes. Biochem Biophys Res Commun 400:489–492. https://doi.org/10.1016/j.bbrc.2010.08.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ríos-González BB, Román-Morales EM, Pietri R, López-Garriga J (2015) Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem 133:78–86. https://doi.org/10.1016/j.jinorgbio.2014.01.013.Hydrogen

    Article  Google Scholar 

  22. Makarov S V, Horváth AK, Silaghi-Dumitrescu R, Gao Q (2016) Sodium dithionite, rongalite and thiourea oxides. World Scientific (Europe)

  23. Rudenco O, Lehene M, Lupan A et al (2023) Versatility of thiourea dioxide as redox agent in globins: case study with myoglobin. Inorg Chim Acta. https://doi.org/10.1016/J.ICA.2023.121474

    Article  Google Scholar 

  24. Salnikov DSS, Dereven’kov IAA, Makarov SVV et al (2012) Kinetics of reduction of cobalamin by sulfoxylate in aqueous solutions. Rev Roum Chim 57:353–359

    CAS  Google Scholar 

  25. Dereven’kov IA, Ivlev PA, Bischin C et al (2017) Comparative studies of reaction of cobalamin (II) and cobinamide (II) with sulfur dioxide. JBIC J Biol Inorg Chem 22:969–975. https://doi.org/10.1007/s00775-017-1474-z

    Article  CAS  PubMed  Google Scholar 

  26. Sharma PK, Kevorkiants R, de Visser SP et al (2004) Porphyrin traps its terminator! Concerted and stepwise porphyrin degradation mechanisms induced by heme-oxygenase and cytochrome p450. Angew Chem Int Ed Engl 43:1129–1132

    Article  CAS  PubMed  Google Scholar 

  27. Silaghi-Dumitrescu R (2007) A paradigm for O-O bond cleavage in ferric-hydroperoxo complexes. Stud Univ Babes-Bolyai Chem 52:47–53

    CAS  Google Scholar 

  28. Blackburn R, Erkol AY, Phillips GO, Swallow AJ (1974) One-electron reactions in some cobalamins. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 1:1693–1701. https://doi.org/10.1039/F19747001693

    Article  Google Scholar 

  29. Wiley TE, Miller WR, Miller NA et al (2016) Photostability of hydroxocobalamin: ultrafast excited state dynamics and computational studies. J Phys Chem Lett 7:143–147. https://doi.org/10.1021/acs.jpclett.5b02333

    Article  CAS  PubMed  Google Scholar 

  30. Shell TA, Lawrence DS (2011) A new trick (hydroxyl radical generation) for an old vitamin (B 12). J Am Chem Soc 133:2148–2150. https://doi.org/10.1021/ja111585c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sand W, Dopson M, Levicán G et al (2016) Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum Group II CF-1. Front Microbiol 7:748. https://doi.org/10.3389/fmicb.2016.00748

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the Romanian Ministry of Education and Research (project PN-III-P4-ID-PCCF-2016-0142) is gratefully acknowledged. Prof S. V. Makarov (Ivanovo State University of Chemistry and Technology) is thanked for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Silaghi-Dumitrescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3975 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleșa, D., Lehene, M. & Silaghi-Dumitrescu, R. On the reaction of Co(II) cobalamin with hydrogen peroxide. Reac Kinet Mech Cat 136, 1791–1799 (2023). https://doi.org/10.1007/s11144-023-02441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02441-9

Keywords

Navigation