Skip to main content
Log in

Synergetic effect of Pt–Pd bimetallic nanoparticle on MgAl2O4 support in hydrogen production from decalin dehydrogenation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present study, MgAl2O4 carriers were synthesized by the alcohol-heating method, and the effects of Pt loading and Pt/Pd molar ratio on decalin dehydrogenation activity were investigated systematically. The results showed that the size of Pt nanoparticle in the Pt/MgAl2O4 catalysts was closely related to the Pt loading and the optimum Pt loading was 3 wt% in the decalin dehydrogenation. The PtPd bimetallic catalyst with a Pt/Pd molar ratio of 4:1 generated moderate interactions and enhanced the catalytic performance. The superior catalytic performance of the 1 wt% Pt4Pd1/MgAl2O4 catalyst was mainly due to the synergistic effect of bimetallic Pt–Pd nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muzzio M, Lin H, Wei K, Guo X, Sun S (2020) Efficient hydrogen generation from ammonia borane and tandem hydrogenation or hydrodehalogenation over AuPd nanoparticles. ACS Sustain Chem Eng 8:2814–2821. https://doi.org/10.1021/acssuschemeng.9b06862

    Article  CAS  Google Scholar 

  2. Zou H, Guo F, Luo M, Yao Q, Lu Z (2020) La(OH)3-decorated NiFe nanoparticles as efficient catalyst for hydrogen evolution from hydrous hydrazine and hydrazine borane. Int J Hydrogen Energ 45:11641–11650. https://doi.org/10.1016/j.ijhydene.2020.02.074

    Article  CAS  Google Scholar 

  3. Zhang L, Ji L, Yao Z, Yan N, Chen L (2019) Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2. Int J Hydrogen Energ 44:21955–21964. https://doi.org/10.1016/j.ijhydene.2019.06.065

    Article  CAS  Google Scholar 

  4. Dai X, Cao T, Lu X, Bai Y, Qi W (2023) Tailored Pd/C bifunctional catalysts for styrene production under an ethylbenzene oxidative dehydrogenation assisted direct dehydrogenation scheme. Appl Catal B Environ 324:122205. https://doi.org/10.1016/j.apcatb.2022.122205

    Article  CAS  Google Scholar 

  5. Wang Z, Liu G, Zhang X (2023) Efficient and stable Pt/CaO-TiO2-Al2O3 for the catalytic dehydrogenation of cycloalkanes as an endothermic hydrocarbon fuel. Fuel 331:125732. https://doi.org/10.1016/j.fuel.2022.125732

    Article  CAS  Google Scholar 

  6. Zhang D, Zong P, Wang J, Gao H, Guo J, Wang J, Wang Y, Tian Y, Qiao Y (2023) Catalytic dehydrogenation cracking of crude oil to light olefins by structure and basicity/acidity adjustment of bifunctional metal/acid catalysts. Fuel 334:126808. https://doi.org/10.1016/j.fuel.2022.126808

    Article  CAS  Google Scholar 

  7. Lang C, Jia Y, Yao X (2020) Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Mater 26:290–312. https://doi.org/10.4028/www.scientific.net/AMR.512-515.1438

    Article  CAS  Google Scholar 

  8. Du J, Zhao R, Jiao G (2013) The short-channel function of hollow carbon nanoparticles as support in the dehydrogenation of cyclohexane. Int J Hydrogen Energ 38:5789–5795. https://doi.org/10.1016/j.ijhydene.2013.03.064

    Article  CAS  Google Scholar 

  9. Biniwale R, Rayalu S, Devotta S, Ichikawa M (2008) Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int J Hydrogen Energ 33:360–365. https://doi.org/10.1016/j.ijhydene.2007.07.028

    Article  CAS  Google Scholar 

  10. Saito Y, Aramaki K, Hodoshima S, Saito M, Shono A, Kuwano J, Otake K (2008) Efficient hydrogen generation from organic chemical hydrides by using catalytic reactor on the basis of superheated liquid-film concept-ScienceDirect. Chem Eng Sci 63:4935–4941. https://doi.org/10.1016/j.ces.2007.11.036

    Article  CAS  Google Scholar 

  11. Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The U.S. department of energy’s national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 120:246–256. https://doi.org/10.1016/j.cattod.2006.09.022

    Article  CAS  Google Scholar 

  12. Sattler J, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen B (2014) Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem Rev 114(20):10613–10653. https://doi.org/10.1021/cr5002436

    Article  CAS  PubMed  Google Scholar 

  13. Chen S, Pei C, Sun G, Zhao Z, Gong J (2020) Nanostructured catalysts toward efficient propane dehydrogenation. Accounts Mater Res 1:11. https://doi.org/10.1021/accountsmr.0c00012

    Article  CAS  Google Scholar 

  14. Suh Y-W, Kim T, Wan P, Ji H, Kyeounghak J (2017) Different catalytic behaviors of Pd and Pt metals in decalin dehydrogenation to naphthalene. Catal Sci Technol 7:3728–3735. https://doi.org/10.1039/c7cy00569e

    Article  CAS  Google Scholar 

  15. Tuo Y, Meng Y, Chen C, Lin D, Zhang J (2021) Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity. Appl Catal B-Environ 288:119996. https://doi.org/10.1016/j.apcatb.2021.119996

    Article  CAS  Google Scholar 

  16. Qi S, Li Y, Yue J, Chen H, Yi C, Yang B (2014) Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts. Chinese J Catal 35:1833–1839. https://doi.org/10.1016/S1872-2067(14)60178-9

    Article  CAS  Google Scholar 

  17. Suttisawat Y, Sakai H, Abe M, Rangsunvigit P, Horikoshi S (2012) Microwave effect in the dehydrogenation of tetralin and decalin with a fixed-bed reactor. Int J Hydrogen Energ 37:3242–3250. https://doi.org/10.1016/j.ijhydene.2011.10.111

    Article  CAS  Google Scholar 

  18. Kariya N, Fukuoka A, Ichikawa M (2002) Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under “wet-dry multiphase conditions.” Appl Catal A-Gen 233:91–102. https://doi.org/10.1016/S0926-860X(02)00139-4

    Article  CAS  Google Scholar 

  19. Martynenko E, Pimerzin A, Savinov A, Verevkin S, Pimerzin A (2020) Hydrogen release from decalin by catalytic dehydrogenation over supported platinum catalysts. Top Catal 63:178–186. https://doi.org/10.1007/s11244-020-01228-9

    Article  CAS  Google Scholar 

  20. Hadian N, Rezaei M (2013) Combination of dry reforming and partial oxidation of methane over Ni catalysts supported on nanocrystalline MgAl2O4. Fuel 113:571–579. https://doi.org/10.1016/j.fuel.2013.06.013

    Article  CAS  Google Scholar 

  21. Jaiswar V, Katheria S, Deo G, Kunzru D (2017) Effect of Pt doping on activity and stability of Ni/MgAl2O4 catalyst for steam reforming of methane at ambient and high pressure condition. Int J Hydrogen Energ 42:18968–18976. https://doi.org/10.1016/j.ijhydene.2017.06.096

    Article  CAS  Google Scholar 

  22. Tahier T, Mohiuddin E, Key D, Mdleleni M (2021) In-depth investigation of the effect of MgAl2O4 and SiO2 support on sulfur promoted nickel catalysts for the dehydrogenation of propane- ScienceDirect. Catal Today 377:176–186. https://doi.org/10.1016/j.cattod.2020.12.028

    Article  CAS  Google Scholar 

  23. Li J, Tong F, Li Y, Liu X, Guo Y, Wang Y (2022) Dehydrogenation of dodecahydro-N-ethylcarbazole over spinel supporting catalyst in a continuous flow fixed bed reactor. Fuel 321:124034. https://doi.org/10.1016/j.fuel.2022.124034

    Article  CAS  Google Scholar 

  24. Qiu Y, Fu E, Gong F, Xiao R (2022) Catalyst support effect on ammonia decomposition over Ni/MgAl2O4 towards hydrogen production. Int J Hydrogen Energy 47:5044–5052. https://doi.org/10.1016/j.ijhydene.2021.11.117

    Article  CAS  Google Scholar 

  25. Zehtab Salmasi M, Kazemeini M, Sadjadi S, Nematollahi R (2022) Spinel MgAl2O4 nanospheres coupled with modified graphitic carbon nitride nanosheets as an efficient Z-scheme photocatalyst for photodegradation of organic contaminants. Appl Surf Sci 585:152615. https://doi.org/10.1016/j.apsusc.2022.152615

    Article  CAS  Google Scholar 

  26. Yan F, Zhao C, Yi L, Zhang J, Ge B, Zhang T, Li W (2017) Effect of the degree of dispersion of Pt over MgAl2O4 on the catalytic hydrogenation of benzaldehyde. Chinese J Catal 38:1613–1620. https://doi.org/10.1016/S1872-2067(17)62815-8

    Article  CAS  Google Scholar 

  27. Kwak J, Hu J, Mei D, Yi CW, Kim D, Peden C, Allard L, Szanyi J (2009) Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325:1670–1673. https://doi.org/10.1126/science.1176745

    Article  CAS  PubMed  Google Scholar 

  28. Thommes M (2016) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:25. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  29. Li H, Sun G, Qian J, Zhu M, Sun S, Qin X (2007) Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation. Electrochem Commun 9:1410–1415. https://doi.org/10.1016/j.elecom.2007.01.032

    Article  CAS  Google Scholar 

  30. Wang W, Huang Q, Liu J, Zou Z, Hui Y (2008) One-step synthesis of carbon-supported Pd-Pt alloy electrocatalysts for methanol tolerant oxygen reduction. Electrochem Commun 10:1396–1399. https://doi.org/10.1016/j.elecom.2008.07.018

    Article  CAS  Google Scholar 

  31. Bo W, Goodman D, Froment G (2008) Kinetic modeling of pure hydrogen production from decalin. J Catal 253:229–238. https://doi.org/10.1016/j.jcat.2007.11.012

    Article  CAS  Google Scholar 

  32. Jiang N, Rao K, Jin M, Park S (2012) Effect of hydrogen spillover in decalin dehydrogenation over supported Pt catalysts. Appl Catal A-Gen 425:62–67. https://doi.org/10.1016/j.apcata.2012.03.001

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported from the National Natural Science Foundation of China (22202013), Beijing Education Committee Science and Technology Project (KM202110017010) and the special fund from the Beijing Institute of Petrochemical Technology (Grant No. 15031862004-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong Liu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 775 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Wang, F., Liu, Q. et al. Synergetic effect of Pt–Pd bimetallic nanoparticle on MgAl2O4 support in hydrogen production from decalin dehydrogenation. Reac Kinet Mech Cat 136, 2039–2051 (2023). https://doi.org/10.1007/s11144-023-02437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02437-5

Keywords

Navigation