Skip to main content
Log in

Studies on photocatalytic degradation of Rhodamine B using the valentinite Sb2O3

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A facile hydrolysis-precipitation was used to elaborate antimony oxide Sb2O3 (valentinite) and to study its semiconducting and photo-electrochemical properties. The X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis diffuse reflectance, Raman and FTIR spectroscopies were used to characterize the oxide. The XRD analysis indicates an orthorhombic phase (SG: Pccn) with a crystallite size of 102 nm. The optical measurements gave a direct gap of 3.32 eV due to a charge transfer O2−: 2p–Sb3+: 6s while the capacity-potential (C−2E) plot provides a flat band potential of − 0.46 VAg/AgCl. The valence and the conduction bands are located at (− 7.29 eV/2.56 V) and (− 3.97 eV/− 0.76 V), and the energy band diagram of the junction Sb2O3/KOH shows the efficacy of Sb2O3 as photocatalyst. As application, 81% of Rhodamine B (Rh B), a recalcitrant dye with an initial concentration of 5 mg L−1, were mineralized after 7 h under UV light by Sb2O3. According to the inhibitors study, the ·OH radical is the first active specie in the Rh B photo-oxidation, followed by O2·−. The photodegradation follows a zero order kinetic with a photocatalytic half time of 3.8 h, smaller than the photolysis (10.5 h) under UV light (254 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Liu D, Zhu P, Yin L et al (2021) Facile fabrication of Bi2GeO5/Ag@Ag3PO4 for efficient photocatalytic RhB degradation. J Solid State Chem. https://doi.org/10.1016/j.jssc.2021.122309

    Article  Google Scholar 

  2. Wang DG, Tan P, Wang H et al (2018) BODIPY modified g-C3N4 as a highly efficient photocatalyst for degradation of Rhodamine B under visible light irradiation. J Solid State Chem 267:22–27. https://doi.org/10.1016/j.jssc.2018.08.002

    Article  CAS  Google Scholar 

  3. Abdpour S, Kowsari E, Alavi Moghaddam MR et al (2018) Mil-100(Fe) nanoparticles supported on urchin like Bi2S3 structure for improving photocatalytic degradation of rhodamine-B dye under visible light irradiation. J Solid State Chem 266:54–62. https://doi.org/10.1016/j.jssc.2018.07.006

    Article  CAS  Google Scholar 

  4. Cebriano T, Méndez B, Piqueras J (2012) Micro- and nanostructures of Sb2O3 grown by evaporation-deposition: self assembly phenomena, fractal and dendritic growth. Mater Chem Phys 135:1096–1103. https://doi.org/10.1016/j.matchemphys.2012.06.024

    Article  CAS  Google Scholar 

  5. Wang Y, Jiang L, Liu Y et al (2017) Facile synthesis and photoelectrochemical characterization of Sb2O3 nanoprism arrays. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2017.08.106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun M, Li D, Chen Y et al (2009) Synthesis and photocatalytic activity of calcium antimony oxide hydroxide for the degradation of dyes in water. J Phys Chem C. https://doi.org/10.1021/jp903355a

    Article  Google Scholar 

  7. Liu DN, He GH, Zhu L et al (2012) Enhancement of photocatalytic activity of TiO2 nanoparticles by coupling Sb2O3. Appl Surf Sci 258:8055–8060. https://doi.org/10.1016/j.apsusc.2012.04.171

    Article  CAS  Google Scholar 

  8. Huerta-Flores AM, Torres-Martínez LM, Moctezuma E, Carrera-Crespo JE (2018) Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: band engineering and charge transference mechanism. J Photochem Photobiol A Chem. https://doi.org/10.1016/j.jphotochem.2017.12.049

    Article  Google Scholar 

  9. He GH, Liang CJ, Da OuY et al (2013) Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2013.02.055

    Article  Google Scholar 

  10. Lamba R, Umar A, Mehta SK, Kansal SK (2015) Sb2O3-ZnO nanospindles: a potential material for photocatalytic and sensing applications. Ceram Int. https://doi.org/10.1016/j.ceramint.2014.12.109

    Article  Google Scholar 

  11. Jamal A, Rahman MM, Faisal M, Khan SB (2011) Studies on photocatalytic degradation of acridine orange and chloroform sensing using as-grown antimony oxide microstructures. Mater Sci Appl. https://doi.org/10.4236/msa.2011.26093

    Article  Google Scholar 

  12. Ma X, Zhang Z, Li X et al (2004) Micro-sized Sb2O3 octahedra fabricated via a PEG-1000 polymer-assisted hydrothermal route. J Solid State Chem 177:3824–3829. https://doi.org/10.1016/j.jssc.2004.07.005

    Article  CAS  Google Scholar 

  13. Zeng DW, Xie CS, Zhu BL, Song WL (2004) Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method. Mater Lett. https://doi.org/10.1016/S0167-577X(03)00476-2

    Article  Google Scholar 

  14. Tudorache F, Tigau N, Condurache-Bota S (2019) Humidity sensing characteristics of Sb2O3 thin films with transitional electrical behavior. Sens Actuators A. https://doi.org/10.1016/j.sna.2018.11.002

    Article  Google Scholar 

  15. Tan Y, Chen L, Chen H et al (2018) Synthesis of a symmetric bundle-shaped Sb2O3 and its application for anode materials in lithium ion batteries. Mater Lett. https://doi.org/10.1016/j.matlet.2017.10.080

    Article  Google Scholar 

  16. Liu Y, Wang H, Yang K et al (2019) Enhanced electrochemical performance of Sb2O3 as an anode for lithium-ion batteries by a stable cross-linked binder. Appl Sci. https://doi.org/10.3390/app9132677

    Article  PubMed  Google Scholar 

  17. Wang L, Wang Z, Sun Y et al (2019) Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. J Memb Sci. https://doi.org/10.1016/j.memsci.2018.11.041

    Article  Google Scholar 

  18. Hwang C, Choi S, Jung GY et al (2017) Graphene-wrapped porous Sb anodes for sodium-ion batteries by mechanochemical compositing and metallomechanical reduction of Sb2O3. Electrochim Acta. https://doi.org/10.1016/j.electacta.2017.08.166

    Article  Google Scholar 

  19. Chen XY, Huh HS, Lee SW (2008) Hydrothermal synthesis of antimony oxychloride and oxide nanocrystals: Sb4O5Cl2, Sb8O11Cl2, and Sb2O3. J Solid State Chem 181:2127–2132. https://doi.org/10.1016/j.jssc.2008.04.043

    Article  CAS  Google Scholar 

  20. Xu CH, Shi SQ, Surya C, Woo CH (2007) Synthesis of antimony oxide nano-particles by vapor transport and condensation. J Mater Sci 42:9855–9858

    Article  CAS  Google Scholar 

  21. Zeng DW, Zhu BL, Xie CS et al (2004) Oxygen partial pressure effect on synthesis and characteristics of Sb2O3 nanoparticles. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2003.08.044

    Article  Google Scholar 

  22. Sendor D, Weirich T, Simon U (2005) Transformation of nanoporous oxoselenoantimonates into Sb2O3: nanoribbons and nanorods. Chem Commun. https://doi.org/10.1039/b509657j

    Article  Google Scholar 

  23. Gonçalves RA, Baldan MR, Chiquito AJ, Berengue OM (2018) Synthesis of orthorhombic Sb2O3 branched rods by a vapor–solid approach. Nano-Struct Nano-Objects. https://doi.org/10.1016/j.nanoso.2018.05.008

    Article  Google Scholar 

  24. Zhang Y, Li G, Zhang J, Zhang L (2004) Shape-controlled growth of one-dimensional Sb2O3 nanomaterials. Nanotechnology. https://doi.org/10.1088/0957-4484/15/7/007

    Article  Google Scholar 

  25. Wang D, Zhou Y, Song C, Shao M (2009) Phase and morphology controllable synthesis of Sb2O3 microcrystals. J Cryst Growth. https://doi.org/10.1016/j.jcrysgro.2009.06.020

    Article  Google Scholar 

  26. Deng Z, Chen D, Tang F et al (2007) Orientated attachment assisted self-assembly of Sb2O3 nanorods and nanowires: end-to-end versus side-by-side. J Phys Chem C. https://doi.org/10.1021/jp068545o

    Article  Google Scholar 

  27. Deng Z, Tang F, Chen D et al (2006) A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections. J Phys Chem B. https://doi.org/10.1021/jp063748y

    Article  PubMed  Google Scholar 

  28. Hu Y, Zhang H, Yang H (2007) Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2006.03.057

    Article  Google Scholar 

  29. Divya KV, Thomas P, Abraham KE (2018) Exploring the photoluminescence emission behaviour of vacuum deposited Sb2O3 thin film having randomly oriented thorn like structures. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2018.03.031

    Article  Google Scholar 

  30. Naidu BS, Pandey M, Sudarsan V et al (2009) Photoluminescence and Raman spectroscopic investigations of morphology assisted effects in Sb2O3. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2009.04.050

    Article  Google Scholar 

  31. Deng M, Li S, Hong W et al (2019) Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater Chem Phys 223:46–52. https://doi.org/10.1016/j.matchemphys.2018.10.043

    Article  CAS  Google Scholar 

  32. Deng Z, Chen D, Tang F et al (2009) Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section. Nano Res 2:9014. https://doi.org/10.1007/s12274-009-9014-y

    Article  CAS  Google Scholar 

  33. Mostafa AMA, Zakaly HM, Al-Ghamdi SA et al (2021) PbO–Sb2O3–B2O3–CuO glassy system: evaluation of optical, gamma and neutron shielding properties. Mater Chem Phys 258:123937. https://doi.org/10.1016/j.matchemphys.2020.123937

    Article  CAS  Google Scholar 

  34. Boudjemaa A, Boumaza S, Trari M et al (2009) Physical and photo-electrochemical characterizations of α-Fe2O3: Application for hydrogen production. Int J Hydrogen Energy 34:4268. https://doi.org/10.1016/j.ijhydene.2009.03.044

    Article  CAS  Google Scholar 

  35. Biver M, Shotyk W (2013) Stibiconite (Sb3O6OH), senarmontite (Sb2O3) and valentinite (Sb2O3): Dissolution rates at pH 2–11 and isoelectric points. Geochim Cosmochim Acta 109:33. https://doi.org/10.1016/j.gca.2013.01.033

    Article  CAS  Google Scholar 

  36. Kaizra S, Louafi Y, Bellal B et al (2015) Electrochemical growth of tin (II) oxide films: Application in photocatalytic degradation of methylene blue. Mater Sci Semicond Process 30:554–560. https://doi.org/10.1016/j.mssp.2014.10.045

    Article  CAS  Google Scholar 

  37. Kumar JS, Rao UVS (1991) Dielectric properties of tin oxide thin film capacitors. Cryst Res Technol 26:60415. https://doi.org/10.1002/crat.2170260415

    Article  Google Scholar 

  38. Narenuch T, Senasu T, Chankhanittha T, Nanan S (2021) Solvothermal synthesis of CTAB capped and SDS capped BiOCl photocatalysts for degradation of rhodamine B (RhB) dye and fluoroquinolone antibiotics. J Solid State Chem 294:121824. https://doi.org/10.1016/j.jssc.2020.121824

    Article  CAS  Google Scholar 

  39. Bagtache R, Abdmeziem K, Rekhila G, Trari M (2016) Synthesis and semiconducting properties of Na2MnPO4F: Application to degradation of Rhodamine B under UV-light. Mater Sci Semicond Process 51:1–7. https://doi.org/10.1016/j.mssp.2016.04.016

    Article  CAS  Google Scholar 

  40. Kabouche S, Bellal B, Louafi Y, Trari M (2017) Synthesis and semiconducting properties of tin(II) sulfide: Application to photocatalytic degradation of Rhodamine B under sun light. Mater Chem Phys 195:31. https://doi.org/10.1016/j.matchemphys.2017.04.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Faculty of Chemistry (USTHB, Algiers). The authors would like to thank Dr. B. Bellal for his help in the optical measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kabouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 221 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, M., Louafi, Y., Nunes, D. et al. Studies on photocatalytic degradation of Rhodamine B using the valentinite Sb2O3. Reac Kinet Mech Cat 136, 1643–1655 (2023). https://doi.org/10.1007/s11144-023-02411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02411-1

Keywords

Navigation