Skip to main content
Log in

Combined action of cerianite, uv and direct sunlight irradiation for the removal of violet crystal and methylene blue from aqueous solution

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The current study describes the chemical production of CeO2 nanoparticles using co-precipitation, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), reflectance diffuse spectroscopy (RDS), and scanning electron microscopy (SEM). The degradation kinetics of violet crystal and methylene blue were investigated under UV and natural sunlight irradiation. X-ray diffraction analysis reveals that the purity and crystallinity of cerium oxide (CeO2) NPs are perfect. According to the Debye–Scherrer equation and the distribution of single and clustered particle SEM images, the CeO2 particle size of 51.12 nm is adequate. The CeO2 efficient photodegradation of methylene blue and crystal violet under UV and sunlight irradiation was tested. 100% of methylene blue was removed after 30 min in addition 95% of violet crystal degraded after 120 min of UV light exposition. Cerium oxide photocatalytic activity remained steady across five successive trials of UV irradiation. This method evaluates the physicochemical, mechanical stability, and reusability of the CeO2 photocatalyst.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Islam MA, Ali I, Karim SMA et al (2019) Removal of dye from polluted water using novel nano manganese oxide-based materials. J Water Process Eng 32:1–23. https://doi.org/10.1016/j.jwpe.2019.100911

    Article  Google Scholar 

  2. Ameen S, Seo HK, Shaheer Akhtar M, Shin HS (2012) Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem Eng J 210:220–228. https://doi.org/10.1016/j.cej.2012.08.035

    Article  CAS  Google Scholar 

  3. Singh KP, Gupta S, Singh AK, Sinha S (2011) Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J Hazard Mater 186:1462–1473. https://doi.org/10.1016/j.jhazmat.2010.12.032

    Article  CAS  PubMed  Google Scholar 

  4. He H, Yang S, Yu K, Ju Y, Sun C, Wang L (2010) Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. J Hazard Mater 173:393

    Article  CAS  PubMed  Google Scholar 

  5. Hofmann U, Kottenhahn H, Morcos S (1966) Adsorption of methylene blue on clays. Angew Chemie Int Ed English 5:247–248. https://doi.org/10.1002/anie.196602473

    Article  CAS  Google Scholar 

  6. Rokhsat E, Akhavan O (2016) Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl Surf Sci 371:590–595. https://doi.org/10.1016/j.apsusc.2016.02.222

    Article  CAS  Google Scholar 

  7. Soares SF, Simões TR, Trindade T, Daniel-da-Silva AL (2017) Highly efficient removal of dye from water using magnetic carrageenan/silica hybrid nano-adsorbents. Water Air Soil Pollut. https://doi.org/10.1007/s11270-017-3281-0

    Article  Google Scholar 

  8. Sajid MM, Assaedi H, Zhai H (2023) Transition metal vanadates (MVO; M=Bi, Fe, Zn) synthesized by a hydrothermal method for efficient photocatalysis. J Mater Sci Mater Electron 34:1–16. https://doi.org/10.1007/s10854-023-09923-5

    Article  CAS  Google Scholar 

  9. Bessoussa F, Ben NJ, Samet L, Chtourou R (2020) Controlled hydrothermal synthesis and solar light photocatalysis properties of branched Bi2S3/TiO2 nano-heterostructure. J Mater Sci Mater Electron 31:17980–17994. https://doi.org/10.1007/s10854-020-04350-2

    Article  CAS  Google Scholar 

  10. Bijanzad K, Tadjarodi A, Moghaddasi Khiavi M, Akhavan O (2015) Microwave-assisted synthesis of bismuth oxybromochloride nanoflakes for visible light photodegradation of pollutants. Phys B Condens Matter 475:14–20. https://doi.org/10.1016/j.physb.2015.06.013

    Article  CAS  Google Scholar 

  11. Fergani S, Zazoua H, Saadi A et al (2023) Activation of peroxymonosulfate by Co2SnO4/Co3O4/SnO2 material for the effective degradation of diclofenac. React Kinet Mech Catal. https://doi.org/10.1007/s11144-023-02381-4

    Article  Google Scholar 

  12. Tanji K, El Mrabet I, Fahoul Y et al (2023) Experimental and theoretical investigation of enhancing the photocatalytic activity of Mg doped ZnO for nitrophenol degradation. React Kinet Mech Catal. https://doi.org/10.1007/s11144-023-02385-0

    Article  Google Scholar 

  13. Alani OA, Alani SO, Ari HA et al (2022) Tetracycline degradation by efficient synergistic bio-templated CuO photocatalysis and Fenton hybrid process irradiated by visible light: influential parameters, and mechanisms. J Mater Sci Mater Electron 33:25603–25618. https://doi.org/10.1007/s10854-022-09258-7

    Article  CAS  Google Scholar 

  14. Aslam M, Qamar MT, Soomro MT et al (2016) The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for the degradation of phenol and its derivatives. Appl Catal B Environ 180:391–402. https://doi.org/10.1016/j.apcatb.2015.06.050

    Article  CAS  Google Scholar 

  15. Iqbal J, Shah NS, Khan ZUH et al (2022) Visible light driven doped CeO2 for the treatment of pharmaceuticals in wastewater: a review. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2022.103130

    Article  Google Scholar 

  16. Liu Y, Lu X, Wu F, Deng N (2011) Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals. React Kinet Mech Catal 104:61–73. https://doi.org/10.1007/s11144-011-0349-5

    Article  CAS  Google Scholar 

  17. Karakurt H, Kartal OE (2022) Removal of reactive red 120 using immobilized TiO2 in the presence of UV light. React Kinet Mech Catal 135:2153–2173. https://doi.org/10.1007/s11144-022-02230-w

    Article  CAS  Google Scholar 

  18. Bouafia A, Meneceur S, Chami S, Laouini SE, Daoudi H, Legmairi S, Mohammed Mohammed HA, Aoun N, Menaa F (2023) Removal of hydrocarbons and heavy metals from petroleum water by modern green nanotechnology methods. Sci Rep 13:5637. https://doi.org/10.1038/s41598-023-32938-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graham AR (1955) Cerianite CeO2: a new rare-earth oxide mineral. Am Mineral 40:560–564

    CAS  Google Scholar 

  20. Szucs AM, Maddin M, Brien D et al (2023) The role of nanocerianite (CeO2) in the stability of Ce carbonates at low-hydrothermal conditions. RSC Adv 13:6919–6935. https://doi.org/10.1039/d3ra00519d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zarinkamar M, Farahmandjou M, Firoozabadi TP (2016) One-step synthesis of ceria (CeO2) nano-spheres by a simple wet chemical method. J Ceram Process Res 17:166–169

    Google Scholar 

  22. Hagfeldt A, Grätzel M (1995) Light-Induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68. https://doi.org/10.1021/cr00033a003

    Article  CAS  Google Scholar 

  23. Singh RP, Singh SL (1986) Electrodeposited semiconducting CuInSe2 films. II. Photo-electrochemical solar cells. J Phys D Appl Phys 19:1759–1769. https://doi.org/10.1088/0022-3727/19/9/020

    Article  CAS  Google Scholar 

  24. Sharma D, Mehta BR (2018) Nanostructured TiO2 thin films sensitized by CeO2 as an inexpensive photoanode for enhanced photoactivity of water oxidation. J Alloys Compd 749:329–335. https://doi.org/10.1016/j.jallcom.2018.03.228

    Article  CAS  Google Scholar 

  25. Safat S, Buazar F, Albukhaty S, Matroodi S (2021) Enhanced sunlight photocatalytic activity and biosafety of marine-driven synthesized cerium oxide nanoparticles. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-94327-w

    Article  CAS  Google Scholar 

  26. Magdalane CM, Kaviyarasu K, Vijaya JJ et al (2017) Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine—B dye for textile engineering application. J Alloys Compd 727:1324–1337. https://doi.org/10.1016/j.jallcom.2017.08.209

    Article  CAS  Google Scholar 

  27. Phuruangrat A, Thongtem S, Thongtem T (2017) Microwave-assisted hydrothermal synthesis and characterization of CeO2nanowires for using as a photocatalytic material. Mater Lett 196:61–63. https://doi.org/10.1016/j.matlet.2017.03.013

    Article  CAS  Google Scholar 

  28. Tambat S, Umale S, Sontakke S (2016) Photocatalytic degradation of Milling Yellow dye using sol-gel synthesized CeO2. Mater Res Bull 76:466–472. https://doi.org/10.1016/j.materresbull.2016.01.010

    Article  CAS  Google Scholar 

  29. Zhang C, Zhang X, Wang Y, Xie S, Liu Y, Lu X, Tong YNJC (2014) Facile electrochemical synthesis of CeO2 hierarchical nanorods and nanowires with excellent photocatalytic activities. New J Chem 38:2581–2586

    Article  CAS  Google Scholar 

  30. Aslam M, Qamar MT, Soomro MT, Ismail IMI, Salah N, Almeelbi T, Gondal MA, Hameed A (2016) The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for degradation of phenol and its derivatives. Appl Catal B Environ 180:391–402

    Article  CAS  Google Scholar 

  31. Khan MM, Ansari SA, Pradhan D et al (2014) Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind Eng Chem Res 53:9754–9763. https://doi.org/10.1021/ie500986n

    Article  CAS  Google Scholar 

  32. Amoresi RAC, Oliveira RC, Marana NL, de Almeida PB, Prata PS, Zaghete MA, Longo E, Sambrano JR, Simoes AZ (2019) CeO2 nanoparticle morphologies and their corresponding crystalline planes for Pollutants., the photocatalytic degradation of organic. ACS Appl Nano Mater 2:6513–6526

    Article  CAS  Google Scholar 

  33. Sebastiammal S, Mariappan A, Neyvasagam K, Fathima AL (2019) ScienceDirect annona muricata inspired synthesis of CeO2 nanoparticles and their antimicrobial activity. Mater Today: Proc 9:627–632. https://doi.org/10.1016/j.matpr.2018.10.385

    Article  CAS  Google Scholar 

  34. Phokha S, Hunpratub S, Usher B et al (2018) Applied surface science effects of CeO2 nanoparticles on electrochemical properties of carbon/CeO2 composites. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.02.209

    Article  Google Scholar 

  35. Guo M, Guo C, Jin L et al (2010) Nano-sized CeO2 with extra-high surface area and its activity for CO oxidation. Mater Lett 64:1638–1640. https://doi.org/10.1016/j.matlet.2010.04.018

    Article  CAS  Google Scholar 

  36. Schlumberger C, Thommes M (2021) Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—a tutorial review. Adv Mater Interfaces. https://doi.org/10.1002/admi.202002181

    Article  Google Scholar 

  37. Li Q, Liu L, Wang Z, Wang X (2022) Continuous hydrothermal flow synthesis and characterization of ZrO2 nanoparticles doped with CeO2 in supercritical water. Nanomaterials. https://doi.org/10.3390/nano12040668

    Article  PubMed  PubMed Central  Google Scholar 

  38. Khosravikia M, Rahbar-Kelishami A (2022) A simulation study of an applied approach to enhance drug recovery through electromembrane extraction. J Mol Liq 358:119210. https://doi.org/10.1016/j.molliq.2022.119210

    Article  CAS  Google Scholar 

  39. Fukahori S, Fujiwara T, Ito R, Funamizu N (2011) PH-Dependent adsorption of sulfa drugs on high silica zeolite: modeling and kinetic study. Desalination 275:237–242. https://doi.org/10.1016/j.desal.2011.03.006

    Article  CAS  Google Scholar 

  40. Abid HN, Al-keisy A, Ahmed DS et al (2022) pH dependent synthesis and characterization of bismuth molybdate nanostructure for photocatalysis degradation of organic pollutants. Environ Sci Pollut Res 29:37633–37643. https://doi.org/10.1007/s11356-021-18064-3

    Article  CAS  Google Scholar 

  41. Neppolian B, Choi HC, Sakthivel S et al (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46:1173–1181. https://doi.org/10.1016/S0045-6535(01)00284-3

    Article  CAS  PubMed  Google Scholar 

  42. Damodar RA, Jagannathan K, Swaminathan T (2007) Decolourization of reactive dyes by thin film immobilized surface photoreactor using solar irradiation. Sol Energy 81:1–7. https://doi.org/10.1016/j.solener.2006.07.001

    Article  CAS  Google Scholar 

  43. Amani H, Habibey R, Hajmiresmail SJ et al (2017) Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B 5:9452–9476

    Article  CAS  PubMed  Google Scholar 

  44. Wu H, Shabala L, Shabala S, Giraldo JP (2018) Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ Sci Nano 5:1567–1583. https://doi.org/10.1039/c8en00323h

    Article  CAS  Google Scholar 

  45. Zhang Q, Chen J, Gao X et al (2022) Understanding the mechanism of interfacial interaction enhancing photodegradation rate of pollutants at molecular level : Intermolecular π—π interactions favor electrons delivery. J Hazard Mater 430:128386. https://doi.org/10.1016/j.jhazmat.2022.128386

    Article  CAS  PubMed  Google Scholar 

  46. Pouretedal HR, Kadkhodaie A (2010) Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation : kinetics and mechanism. Chinese J Catal 31:1328–1334. https://doi.org/10.1016/S1872-2067(10)60121-0

    Article  CAS  Google Scholar 

  47. Wandre TM, Gaikwad PN, Tapase AS et al (2016) Sol – gel synthesized TiO 2—CeO2 nanocomposite : an efficient photocatalyst for degradation of methyl orange under sunlight. J Mater Sci Mater Electron 27:825–833. https://doi.org/10.1007/s10854-015-3823-4

    Article  CAS  Google Scholar 

  48. Liu X, Meng F, Yu B, Wu H (2020) Self - assembly synthesis of flower—like—CeO2/MoS 2 heterojunction with enhancement of visible light photocatalytic activity for methyl orange. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-020-03225-w

    Article  Google Scholar 

  49. Wen X, Zhang C, Niu C et al (2017) Highly enhanced visible light photocatalytic activity of CeO2 through fabricating a novel p—n junction BiOBr/CeO2. Catal Commun 90:51–55. https://doi.org/10.1016/j.catcom.2016.11.018

    Article  CAS  Google Scholar 

  50. Ji P, Zhang J, Chen F, Anpo M (2009) Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl Catal B Environ 85:148–154. https://doi.org/10.1016/j.apcatb.2008.07.004

    Article  CAS  Google Scholar 

  51. Channei D, Nakaruk A, Phanichphant S (2017) Photocatalytic degradation of dye using CeO2/SCB composite catalysts. Spectrochim Acta—Part A Mol Biomol Spectrosc 183:218–224. https://doi.org/10.1016/j.saa.2017.04.063

    Article  CAS  Google Scholar 

  52. Murugadoss G, Ma J, Ning X, Kumar MR (2019) Selective metal ions doped CeO2 nanoparticles for excellent photocatalytic activity under sun light and supercapacitor application. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2019.107577

    Article  Google Scholar 

  53. Mao C, Zhao Y, Qiu X, Zhu J, Burda C (2008) Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity. Phys Chem Chem Phys 10:5633–5638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Higher Education and Scientific Research of Algeria, Jijel University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narimene Aoun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoun, N., Boucheloukh, H., Belkhalfa, H. et al. Combined action of cerianite, uv and direct sunlight irradiation for the removal of violet crystal and methylene blue from aqueous solution. Reac Kinet Mech Cat 136, 1607–1623 (2023). https://doi.org/10.1007/s11144-023-02410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02410-2

Keywords

Navigation