Skip to main content
Log in

Theoretical analysis of homogeneous catalysis of electrochemical reactions: steady-state current–potential

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This article presents a theoretical analysis of homogeneous redox catalysis in electrochemical reactions. A nonlinear differential system is used as a model in which a nonlinear term is linked to homogeneous reactions. The concentration of the mediator and substrate at a planar electrode is computed using an analytical method under pure kinetic conditions and constant substrate concentration. This simplifies the analysis, which can be achieved with slow-scan rates and concentrations in real-world scenarios. The resulting current–potential responses have an S shape and are independent of the scan rate. The impact of two essential parameters on the current is investigated. The derived analytical expressions show high accuracy when compared to numerical results, which show satisfactory agreement. The limiting cases for the concentration characteristics and current–potential response are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

None.

Abbreviations

\({C}_{p}^{0},{C}_{A}^{0}\) :

Bulk concentration of species \(P, A\) (\(\text{mol c}{\text{m}}^{-3}\))

\({C}_{SPECIES}\) :

Concentration of the species \(A, B, C, P, Q\) (\(\text{mol c}{\text{m}}^{-3}\))

\(i\) :

Current (A)

\({D}_{p}\) :

Diffusion coefficient of species \(P\)(\({\text{cm}}^{2}{{\text{s}}}^{-1}\))

\(u,v,w, n\) :

Dimensionless concentration of the species \(P, Q, B, C\) (None)

\(\varphi\) :

Dimensionless current (None)

\(x\) :

Dimensionless distance from the (planar) electrode surface (None)

\(\xi\) :

Dimensionless potential (None)

\({v}_{0}\) :

Dimensionless parameters defined in Eq. (13) (None)

\({v}_{1}\) :

Dimensionless parameters defined in Eq. 26 (None)

\({\beta }_{1}, {\beta }_{2}, {\beta }_{3}\) :

Dimensionless parameters defined in Eqs. 19 and 20 (None)

\(y\) :

Distance from the (planar) electrode surface (\({\text{cm}})\)

\(E\) :

Electrode potential (V)

\(F\) :

Faraday constant (C mol–1)

\({\xi }_{1/2}\) :

Half-wave potential (V)

\(\kappa ,\lambda\) :

Dimensionless Intrinsic and operational parameters (None)

\({\varphi }_{pi}\) :

Plateau current (None)

\({E}_{P/Q}\) :

Standard potential of the catalyst couple (V)

References

  1. Hoffert MI, Caldeira K, Jain AK, Haites EF, Harvey LDD, Potter SD, Schlesinger ME, Schneider SH, Watts RG, Wigley TML, Wuebbles DJ (1998) Energy implications of future stabilization of atmospheric CO2 content. Nature 395:881–884. https://doi.org/10.1038/27638

    Article  CAS  Google Scholar 

  2. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735. https://doi.org/10.1073/pnas.0603395103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gray HB (2009) Powering the planet with solar fuel. Nature Chem 1:7–7. https://doi.org/10.1038/nchem.141

    Article  CAS  Google Scholar 

  4. Nocera DG (2009) Chemistry of personalized solar energy. Inorg Chem 48:10001–10017. https://doi.org/10.1021/ic901328v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abbott D (2010) Keeping the energy debate clean: how do we supply the world’s energy needs. Proc IEEE 98:42–66

    Article  CAS  Google Scholar 

  6. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–333. https://doi.org/10.1038/nature11475

    Article  CAS  PubMed  Google Scholar 

  7. Artero V, Fontecave M (2013) Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis. Chem Soc Rev 42:2338–2356. https://doi.org/10.1039/c2cs35334b

    Article  CAS  PubMed  Google Scholar 

  8. Che G, Dong S (1992) Application of ultramicroelectrodes in studies of homogeneous catalytic reactions-part ii. A theory of quasi-first and second-order homogeneous catalytic reactions. Electrochim Acta 37:2695–2699. https://doi.org/10.1016/0013-4686(92)85195-Q

    Article  CAS  Google Scholar 

  9. Denuault G, Pletcher D (1991) Improvement to the equation for the steady state limiting currents at a microelectrode: EC′ processes (1st and 2nd order reactions). J Electroanal Chem 305:131–134. https://doi.org/10.1016/0022-0728(91)85207-6

    Article  CAS  Google Scholar 

  10. Denuault G, Fleischmann M, Pletcher D, Tutty OR (1990) Development of the theory for the interpretation of steady state limiting currents at a microelectrode. J Electroanal Chem Interf Electrochem 280:243–254. https://doi.org/10.1016/0022-0728(90)87001-z

    Article  Google Scholar 

  11. Bartlett PN, Eastwick-Field V (1993) Theoretical analysis for a second-order ECE process at a rotating-disc electrode EC′ processes: first and second- order reactions. J Chem Soc Faraday Trans 89:213–218.

    Article  CAS  Google Scholar 

  12. Eswari A, Usha S, Rajendran L (2011) Approximate solution of non-linear reaction diffusion equations in homogeneous processes coupled to electrode reactions for CE mechanism at a spherical electrode. J Anal Chem 2:93–103.

    Article  CAS  Google Scholar 

  13. Visuvasam J, Meena A, Rajendran L (2020) New analytical method for solving nonlinear equation in rotating disk electrodes for second-order ECE reactions. J Electroanal Chem 869:114106. https://doi.org/10.1016/j.jelechem.2020.114106

    Article  CAS  Google Scholar 

  14. Manimegalai B, Lyons MEG, Rajendran L (2021) Transient chronoamperometric current at rotating disc electrode for second-order ECE reactions. J Electroanal Chem 902:115775. https://doi.org/10.1016/j.jelechem.2021.115775

    Article  CAS  Google Scholar 

  15. Joy Salomi R, Rajendran L (2022) Cyclic voltammetric response of homogeneous catalysis of electrochemical reactions: part 1. A theoretical and numerical approach for EE′C scheme. J Electroanal Chem 918:116429. https://doi.org/10.1016/j.jelechem.2022.116429

    Article  CAS  Google Scholar 

  16. Vinolyn Sylvia S, Rajendran L (2022) Cyclic voltammetric response of homogeneous catalysis of electrochemical reactions: part 2. A theoretical and numerical approach for EC scheme. J Electroanal Chem 918:116453. https://doi.org/10.1016/j.jelechem.2022.116453

    Article  CAS  Google Scholar 

  17. Manimegalai B, Rajendran L (2022) Cyclic voltammetric response of homogeneous catalysis of electrochemical reaction. Part 3: a theoretical and numerical approach for one-electron two-step reaction scheme. J Electroanal Chem 922:116706. https://doi.org/10.1016/j.jelechem.2022.116706

    Article  CAS  Google Scholar 

  18. Costentin C, Savéant JM (2018) Homogeneous catalysis of electrochemical reactions: the steady-state and nonsteady-state statuses of intermediates. ACS Catal 8:5286–5297. https://doi.org/10.1021/acscatal.8b01195

    Article  CAS  Google Scholar 

  19. Abukhaled M (2013) Variational iteration method for nonlinear singular two-point boundary value problems arising in human physiology. J Math 2013:720134. https://doi.org/10.1155/2013/720134

    Article  Google Scholar 

  20. Usha Rani R, Rajendran L (2020) Taylor’s series method for solving the nonlinear reaction-diffusion equation in the electroactive polymer film. Chem Phy Lett 754:137573.

    Article  CAS  Google Scholar 

  21. Mary LC, Usha Rani R, Meena A, Rajendran L (2021) Nonlinear mass transfer at the electrodes with reversible homogeneous; reactions: Taylor’s series and hyperbolic function method. Int J Electrochem Sci 16:151037.

    Article  CAS  Google Scholar 

  22. Usha Rani R, Rajendran L (2021) Diffusion indicator for hemispheroidal and ring ultramicroelectrode geometries for E and ECʹ reactions. Electrochem Commun 128:107071H.

    Article  Google Scholar 

  23. Salai Sivasundari SA, Usha Rani R, Lyons MEG, Rajendran L (2022) Transport and kinetics in biofiltration membranes: new analytical expressions for concentration profiles of hydrophilic and hydrophobic VOCs using Taylor’s series and Akbari Ganji’s method. Int J Electrochem Sci 17:220447

    Article  Google Scholar 

  24. Narayanan KL, Shanthi R, Usha Rani R, Lyons MEG, Rajendran L (2022) Mathematical modelling of forced convection in a porous medium for a general geometry: solution of thermal energy equation via taylor’s series with Ying Buzu algorithms. Int J Electrochem Sci 17:220623

    Article  CAS  Google Scholar 

  25. Narayanan KL, Kavitha J, Usha Rani R, Lyons MEG, Rajendran L (2022) Mathematical modelling of amperometric glucose biosensor based on immobilized enzymes: new approach of taylors series method. Int J Electrochem Sci 17:221064

    Article  CAS  Google Scholar 

  26. Usha Rani R, Rajendran L, Abukhaled M (2022) Approximations for the concentration and effectiveness factor in porous catalysts of arbitrary shape: Taylor Series and Akbari-Ganji’s methods. Math Model Eng Probl 8:527

    Article  Google Scholar 

  27. Silambuselvi V, Rekha S, Usha Rani R, Rajendran L, Angaleeshwari K, Lyons MEG (2023) Theoretical analysis of amperometric response towards PPO-based rotating disk bioelectrodes: Taylors series and hyperbolic function method. Int J Electrochem Sci 18(4):100083

    Article  Google Scholar 

  28. Joy Salomi R, Vinolyn Sylvia S, Rajendran L, Abukhaled M (2020) Electric potential and surface oxygen ion density for planar, spherical and cylindrical metal oxide grains. Sens Actuators B Chem 321:128576. https://doi.org/10.1016/j.snb.2020.128576

    Article  CAS  Google Scholar 

  29. Saranya J, Usha Rani R, Lyons MEG, Abukhaled M, Rajendran L (2022) Analytical expressions for steady-state current and estimation of kinetic parameters in an amperometric biosensor with the product inhibition: power series method. AIP Conf Proc 2516:250017

    Article  Google Scholar 

  30. Usha Rani R, Rajendran L (2020) Approximate analytical solution of nonlinear equations in cubic auto-catalytic reaction-diffusion process. AIP Conf Proc 2577:130006

    Article  Google Scholar 

  31. Abukhaled M (2017) Green’s function iterative method for Solving a class of boundary value problems arising in heat transfer. Appl. Math. Inf. Sci 11(1):229–234. https://doi.org/10.18576/amis/110128

    Article  Google Scholar 

  32. Rach R, Duan JS, Wazwaz AM (2020) Simulation of large deflections of a flexible cantilever beam fabricated from functionally graded materials by the Adomian decomposition method. Int J Dyn Syst Differ Equ 10:287–298. https://doi.org/10.1504/ijdsde.2020.109104

    Article  Google Scholar 

  33. Usha Rani R, Rajendran L, Lyons MEG (2021) Steady-state current in product inhibition kinetics in an amperometric biosensor: Adomian decomposition and Taylor series method. J Electroanal Chem 886:115103. https://doi.org/10.1016/j.jelechem.2021.115103

    Article  CAS  Google Scholar 

  34. Lyons MEG (2009) Transport and kinetics at carbon nanotube—Redox enzyme composite modified electrode biosensors Part 2. Redox enzyme dispersed in nanotube mesh of finite thickness. Int J Electrochem Sci 4:1196–1236

    CAS  Google Scholar 

  35. He JH (1999) Homotopy perturbation technique. Appl Mech Eng 178:257–262. https://doi.org/10.1016/S0045-7825(99)00018-3

    Article  Google Scholar 

  36. He JH (2014) Homotopy perturbation method with two expanding parameters. Indian J Phys 88:193–196. https://doi.org/10.1007/s12648-013-0378-1

    Article  CAS  Google Scholar 

  37. Chitra Devi M, Pirabaharan P, Rajendran L, Abukhaled M (2021) Amperometric biosensors in an uncompetitive inhibition processes: a complete theoretical and numerical analysis. Reac Kinet Mech Cat 133:655–668. https://doi.org/10.1007/s11144-021-02015-7

    Article  CAS  Google Scholar 

  38. Sylvia VS, Salomi RJ, Rajendran L, Lyons MEG (2022) Amperometric biosensors and coupled enzyme nonlinear reactions processes: a complete theoretical and numerical approach. Electrochim Acta 415:140236. https://doi.org/10.1016/j.electacta.2022.140236

    Article  CAS  Google Scholar 

  39. Rostami AK, Akbari MR, Ganji DD, Heydari S (2014) Investigating Jeffery-Hamel flow with high magnetic field and nanoparticle by HPM and AGM. Cent Eur J Eng 4:357–370

    Google Scholar 

  40. Lyons MEG (2020) Understanding the kinetics of catalysed reactions in microheterogeneous thin film electrodes. J Electroanal Chem 872:114278. https://doi.org/10.1016/j.jelechem.2020.114278

    Article  CAS  Google Scholar 

  41. Clarance Mary ML, Devi MC, Meena A, Rajendran L, Abukhaled M (2021) Mathematical modeling of immobilized enzyme in porous planar, cylindrical, and spherical particle: a reliable semi-analytical approach. React Kinet Mech Catal 134:641–651

    Article  Google Scholar 

  42. Rajaram M, Uma Maheswari M, Visuvasam J, Meena A, Rajendran L, Lyons MEG (2023) Modeling glucose isomerization in a packed- bed reactor: a complete theoretical and numerical approach. Int J Electrochem Sci 18:100023

    Article  Google Scholar 

  43. Reena A, Karpagavalli SG, Rajendran L, Manimegalai B, Swaminathan R (2023) Theoretical analysis of putrescine enzymatic biosensor with optical oxygen transducer in sensitive layer using Akbari- Ganji method. Int J Electrochem Sci 18:100113

    Article  Google Scholar 

  44. Vinolyn Sylvia S, Joy Salomi R, Rajendran L (2023) Mathematical modelling of enzymatic glucose fuel cell and numerical validation. J Electroanal Chem 916:117382. https://doi.org/10.1016/j.jelechem.2023.117382

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RUR: Data curation, Formal analysis, Software, Visualization, Writing—original draft. LR: Conceptualization, Methodology, Resources, Supervision, Validation. MA: Methodology, Validation, Resources, Investigation, Supervision.

Corresponding authors

Correspondence to Lakshmanan Rajendran or Marwan Abukhaled.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, R.U., Rajendran, L. & Abukhaled, M. Theoretical analysis of homogeneous catalysis of electrochemical reactions: steady-state current–potential. Reac Kinet Mech Cat 136, 1229–1242 (2023). https://doi.org/10.1007/s11144-023-02407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02407-x

Keywords

Navigation