Skip to main content
Log in

Investigation of Cr-MIL-100 and Cr-MIL-101 activity and stability in amidation reaction of fatty acid methyl esters

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Chromium containing metal–organic frameworks (MOFs) Cr-MIL-100 and Cr-MIL-101 are widely used as catalysts for many organic reactions. Usage of such MOFs as ester amidation catalysts is reported for the first time. Cr-MIL-100 and Cr-MIL-101 are easier in usage than classical homogeneous basic catalysts (NaOH or CH3OH) due to its insolubility in reaction mixtures and obviously more active than numbers of elsewhere reported heterogeneous catalysts. Addition of small amounts of MOFs leads to significant increasing of amidation reaction rate and product yields.

Graphical abstract

Usage of chromium containing metal–organic frameworks Cr-MIL-100 and Cr-MIL-101 as ester amidation catalysts is reported for the first time. Cr-MIL-100 and Cr-MIL-101 are easier in usage than classical homogeneous basic catalysts (NaOH or CH3OH) due to its insolubility in reaction mixtures and obviously more active than numbers of elsewhere reported heterogeneous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Materials described in the manuscript includes all relevant raw data and are available to any researcher who read this manuscript.

References

  1. Clayden J, Greeves N, Warren S (2012) Organic Chemistry, 2nd edn. Oxford University Press Inc, New York

    Google Scholar 

  2. Lundberg H, Tinnis F, Selander N, Adolfsson H (2014) Catalytic amide formation from non-activated carboxylic acids and amines Chem. Soc Rev 43:2714–2742

    Article  CAS  Google Scholar 

  3. Scheibel JJ and Shumate RE (1997) US Patent 5681971A.

  4. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  5. De Almeida CG, De Sousa IF, Sousa RA, Le Hyaric M (2013) Direct aminolysis of triglycerides: a novel use for heterogeneous catalysts. Catal Commun 4:25–29

    Article  Google Scholar 

  6. Kumar D, Ali A (2015) Direct synthesis of fatty acid alkanolamides and fatty acid alkyl esters from high free fatty acid containing triglycerides as lubricity improvers using heterogeneous catalyst. Fuel 159:845–953

    Article  CAS  Google Scholar 

  7. Shirshin KK, Esipovich AL, Kazantsev OA, Gushchin AV (2019) Amidation of fatty acid methyl ester using metal oxides and hydroxides as catalysts. CHEM PAP 73(6):1571–1574

    Article  CAS  Google Scholar 

  8. De Oliveira VM, Silva de Jesus R, Gomes AF, Gozzo FC, Umpierre AP, Suarez PAZ, Rubim JC, Neto BAD (2011) Catalytic Aminolysis (Amide Formation) from esters and carboxylic acids: mechanism, enhanced ionic liquid effect, and its origin. ChemCatChem 3:1911

    Article  Google Scholar 

  9. Dermer OC, King J (1943) J Org Chem 8:169

    Article  Google Scholar 

  10. Komura K, Nakano Y, Koketsu M (2011) Mesoporous silica MCM-41 as a highly active, recoverable and reusable catalyst for direct amidation of fatty acids and long-chain amines. Green Chem 13:828–831

    Article  CAS  Google Scholar 

  11. Morimoto H, Fujiwara R, Shimizu Y (2014) Lanthanum(III) Triflate catalyzed direct. Amidation of Esters Org Lett 16:2018–2021

    Article  CAS  PubMed  Google Scholar 

  12. de Zoete MC, Kock-Van Dalen AC, Van-Rantwijk F, Sheldon RA (1996) Lipase-catalysed ammoniolysis of lipids. A facile synthesis of fatty acid amides. J Mol Cat B Enzym 1:109–113

    Article  Google Scholar 

  13. Litjens MJJ, Sha M, Straathof AJJ, Jongejan JA, Heijnen JJ (1999) Competitive lipase-catalyzed ester hydrolysis and ammoniolysis in organic solvents; equilibrium model of a solid–liquid–vapor system. Biotechnol Bioeng 65:347–356

    Article  CAS  PubMed  Google Scholar 

  14. Shirshin KK, Esipovich AL, Kazantsev OA, Rumyantsev M, Korotaev MS, Rogozhin AE (2021) Specific organocatalysis in amidation reaction of fatty acid methyl esters with 3-(Dimethylamino)-1-propylamine. ChemistrySelect 6:480–487

    Article  CAS  Google Scholar 

  15. Shirshin KK, Esipovich AL, Korotaev MS, Zol’nova AD, Rogozhin AE, (2021) Lead acetate catalyzed solvent-free synthesis of N-[3-(dimethylamino)propyl] amides. React Kinet Mech Catal 133(2):841–850. https://doi.org/10.1007/s11144-021-02005-9

    Article  CAS  Google Scholar 

  16. Shirshin KK, Esipovich AL, Kanakov E, Rogozhin AE (2021) Investigation of Co3O4 activity and stability in amidation of fatty acid methyl esters. ChemistrySelect 6(40):11076–11080

    Article  CAS  Google Scholar 

  17. Zou M, Dong M, Zhao T (2022) Advances in metal–organic frameworks MIL-101(Cr). Int J Mol Sci 23:9396. https://doi.org/10.3390/ijms23169396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leng K, Sun Y, Li X, Sun S, Xu W (2016) Rapid synthesis of metal-organic frameworks MIL-101(Cr) without the addition of solvent and hydrofluoric acid. Cryst Growth Des 16:1168–1171

    Article  CAS  Google Scholar 

  19. Rostamnia S, Mohsenzad F (2018) Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO(O2)2@En/MIL-100(Cr)] as promising and bifunctional catalyst for selective thioether oxidation. Mol Catal 445:12–20

    Article  CAS  Google Scholar 

  20. Zhao T, Li S, Xiao Y-X, Janiak C, Chang G, Tian G, Yang X-Y (2020) Template-free synthesis to micro-meso-macroporous hierarchy in nanostructured MIL-101(Cr) with enhanced catalytic activity. Sci China Mater 64:252–258

    Article  Google Scholar 

  21. Zhang Z, Chen J, Bao Z, Chang G, Xing H, Ren Q (2015) Insight into the catalytic properties and applications of metalorganic frameworks in the cyanosilylation of aldehydes. RSC Adv 5:79355–79360

    Article  CAS  Google Scholar 

  22. Zang Y, Shi J, Zhang F, Zhong Y, Zhu W (2013) Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification. Catal Sci Technol 3:2044–2049

    Article  CAS  Google Scholar 

  23. Lange KR (1999) Surfactants: A practical Handbook. Hanser Publishers, Munich

    Google Scholar 

  24. Vlasova LI, Latypova DR, Akhmet’yanova LA, Gibadullina NN, Ratner AA, Telin AG, Dokichev VA (2017) Russ J Appl Chem 90(7):1102–1106

    Article  CAS  Google Scholar 

  25. Maag H (1984) J Am Oil Chem Soc 61:259–267

    Article  CAS  Google Scholar 

  26. Stournas S, Lois E, Serdari A (1995) J Am Oil Chem Soc 72:433–437

    Article  CAS  Google Scholar 

  27. Biermann U, Friedt W, Lang S, Luhs W, Machmuller G, Metzger O (2000) Angew Chem Int Ed 39:2206–2224

    Article  CAS  Google Scholar 

  28. Nitsch C, Heitland H-J, Marsen H, Schlussler H-J (2012) Cleansing Agent. Wiley, Weinheim. https://doi.org/10.1002/14356007.a07_137

    Book  Google Scholar 

  29. Esipovich AL, Rogozhin AE, Belousov AS, Kanakov EA, Danov SM (2018) A comparative study of the separation stage of rapeseed oil transesterification products obtained using various catalysts. Fuel Process Technol 173:153–164

    Article  CAS  Google Scholar 

  30. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Article  PubMed  Google Scholar 

  31. Babaee S, Zarei M, Sepehrmansourie H, Ali Zolfigol M, Rostamnia S (2020) Synthesis of metal-organic frameworks MIL-101(Cr)-NH2 containing phosphorous acid functional groups: application for the synthesis of N-amino-2-pyridone and pyrano [2,3-c]pyrazole derivatives via a cooperative vinylogous anomeric-based oxidation. ACS Omega 5(12):6240–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang D, Ke Y, Guo D, Guo H, Chen J, Weng W (2015) Facile fabrication of cauliflower-like MIL-100(Cr) and its simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ from aqueous solution. Sens Actuators B 216:504–510

    Article  Google Scholar 

  33. Panpan M, Gang L, Guoquan Z, Hong L (2014) Co(II)-salen complex encapsulated into MIL-100(Cr) for electrocatalytic reduction of oxygen. J Energy Chem 23(4):507–512

    Article  Google Scholar 

  34. Schug KA, Christian GD (2013) Analytical Chemistry 7th Edition by Purnendu. Wiley, New York, p 848

    Google Scholar 

  35. Lempers HEB, Sheldon RA (1998) J Catal 175:62

    Article  CAS  Google Scholar 

  36. Scattergood PA (2020) Recent advances in chromium coordination chemistry: luminescent materials and photocatalysis. Organometal Chem. 43:1–34. https://doi.org/10.1039/9781788017077-00001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Synthesis of fatty acid esters was carried out with the financial support of the Ministry of Science and Higher Education of Russian Federation within the framework of the scientific project FSWR-2022-0003.

Funding

Ministry of Science and Higher Education of Russian Federation, FSWR-2022-0003

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin K. Shirshin.

Ethics declarations

Conflict of interest

There are no conflicts of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirshin, K.K., Esipovich, A.L., Strakhova, V.I. et al. Investigation of Cr-MIL-100 and Cr-MIL-101 activity and stability in amidation reaction of fatty acid methyl esters. Reac Kinet Mech Cat 136, 741–752 (2023). https://doi.org/10.1007/s11144-023-02380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02380-5

Keywords

Navigation