Skip to main content
Log in

Kinetic parameter estimation and simulation of the second reactor for hydrodesulfurization of diesel

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Using NiMo/γ-Al2O3 catalyst and a pilot-scale unit, a kinetic model was developed for the second reactor of the two-stage hydrogenation process to describe the HDS behavior of diesel in sulfur content lower than 10 μg g−1. The HDS reaction happened in the second reactor was simulated by combining the mass transfer, kinetics model and physical property data of diesel, the results show that the simulated values of sulfur content were within an error range of 10%. Meanwhile, it is found that high temperature, high pressure, high H2/oil volume ratio and removal of H2S from the exit stream of the first reactor improve the sulfur conversion in the second reactor. What is more, the influence of different process parameters on the catalyst effectiveness factor was further analyzed, the results indicate that the increase of temperature, pressure and H2/oil volume ratio can all cause the decrease of the effectiveness factor. These results contribute to a more in-depth understanding of the features and rules in the second HDS reactor, and can also give us some valuable guidance for industrial reactor simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DBT:

Dibenzothiophene

4,6-DMDBT:

4,6-Dimethyldibenzothiophene

GC-SCD:

Gas chromatography with sulfur chemiluminescence detector

UDHDS:

Ultra-deep hydrodesulfurization

L–H:

Langmuir–Hinshelwood

LHSV:

Liquid hourly space velocity

PAHs:

Polycyclic aromatic hydrocarbons

IBP:

Initial boiling point

FBP:

Final boiling point

HDT:

Hydrogenation

\({w}_{sul}\) :

Mass fraction of sulfur (μg g1)

\(LHSV\) :

Liquid hourly space velocity (h1)

\(A\) :

Pre-exponential factor (mol cm3)1n

\(n\) :

Reaction order

\(m\) :

Reaction order of pressure

β :

Reaction order of H2/oil volume ratio

\({K}_{{H}_{2}S}\) :

Adsorption equilibrium constant of H2S component

\(P\) :

Pressure (MPa)

\({\mathrm{H}}_{2}/Oil\) :

H2 to oil volume ratio (v/v)

\(R\) :

Universal gas constant (J mol k1)

\(T\) :

Reaction temperature (K)

\({w}_{Sul}^{L}\) :

Mass fraction of total sulfur compound (μg g1)

\({H}_{2}S\) :

Hydrogen sulfide

\({a}_{L}\) :

Gas–liquid interfacial area (cm1)

\(z\) :

Reactor bed length (cm)

\({u}_{L}\) :

Velocity of the liquid (cm s1)

\({a}_{S}\) :

Specific surface area, liquid–solid interface (cm1)

\({k}_{Sul}^{S}\) :

Liquid–solid mass transfer coefficient for sulfur (cm s1)

\({c}_{Sul}^{L}\) :

Concentration of sulfur in the liquid phase (mol cm3)

\({c}_{Sul}^{S}\) :

Concentration of sulfur in the solid phase (mol cm3)

\({\rho }_{b}\) :

Bulk density of the catalyst particles (g cm3)

\({\eta }_{HDS}\) :

Catalyst effectiveness factor for HDS reaction

\({r}_{Sul}\) :

Reaction rate for total sulfur

\({\rho }_{1}\) :

Liquid density (g cm3)

Mw :

Molecular weight (g mol1)

\({\mu }_{L}\) :

Liquid viscosity (mPa s1)

\({G}_{L}\) :

Liquid mass velocity (g cm2 s1)

\({D}_{sul}^{L}\) :

Molecular diffusivity of sulfur compound in the liquid (cm2 s1)

\(v\) :

Molar volume (cm3 mol1)

\({v}_{L}\) :

Molar volume of liquid feedstock (cm3 mol1)

\({T}_{meABP}\) :

Mean average boiling point (0R)

NE :

The number of experiments

\({A}_{c}\) :

Surface area (cm2)

\(\varepsilon \) :

Void fraction of the catalyst bed

\(v\) :

Volume (cm3)

\(\mathrm{r}\) :

Particle radius (cm)

\({d}_{L}\) :

Length of particle (cm)

\({D}_{R}\) :

Reactor diameter (cm)

\({d}_{s}\) :

Diameter of spherical catalyst particle (cm)

\({d}_{c}\) :

Diameter of catalyst particle (cm)

\({V}_{l}\) :

Molar gas volume of l compound at standard conditions (NL mol1)

\({\phi }_{Sul}\) :

Thiele modulus

\({V}_{P}\) :

Total geometric volume of catalyst (cm−3)

\({S}_{P}\) :

Total geometric external area of catalyst (cm2)

\({K}_{Sul}\) :

Reaction rate coefficient of Sulfur compound

\(De\) :

Effective diffusivity of sulfur in the pores of catalyst (cm2 s−1)

\(\theta \) :

Particle porosity

\(\tau \) :

Tortuosity factor

\({V}_{g}\) :

Pore volume per unit mass of catalyst (cm3 g1)

\({D}_{k}\) :

Knudsen diffusivity (cm2 s−1)

\({s}_{g}\) :

Specific surface area of particle (cm2 g1)

\(SSE\) :

Sum of square errors

exp :

Experiment

cal :

Calculation

\(f\) :

Feedstock

L :

Liquid phase

S :

Solid phase

L :

Liquid phase

S :

Solid phase

exp:

Experimental data

cal:

The data calculated by the model

References

  1. Fuel Regulations. www.dieselnet.com/standards/fuels.html

  2. Diesel Fuel Standards and Rulemakings. https://www.epa.gov/diesel-fuel-standards/diesel-fuel-standards-and-rulemakings

  3. Johnson TV (2010) Review of diesel emissions and control. SAE Int J Fuels Lubr 3:16–29. https://doi.org/10.4271/2010-01-0301

    Article  CAS  Google Scholar 

  4. Albazzaz H, Marafi A, Ma X, Ansari T (2016) Hydrodesulfurization kinetics of middle distillates: a four-lumping model with consideration of nitrogen and aromatics inhibitions. Energy Fuels 31:112–121. https://doi.org/10.1021/acs.energyfuels.6b02581

    Article  CAS  Google Scholar 

  5. Budukva S, Yeletsky P, Zaikina O et al (2019) Secondary middle distillates and their processing (review). Pet Chem 59:941–955. https://doi.org/10.1134/S0965544119090044

    Article  CAS  Google Scholar 

  6. Nie H (2021) Key technologiest for efficient clean diesel production and commercial applocations. Pet Process Petrochem 52:103–109. https://doi.org/10.3969/j.issn.1005-2399.2021.10.018

    Article  Google Scholar 

  7. Panzhu G (2021) Process optimization of RTS technology for ultra-Low sulfur diesel. Pet Process Petrochem Technol 23:104–111

    Google Scholar 

  8. Korsten H, Hoffmann U (1996) Three-phase reactor model of hydrotreating in pilot trickle-bed reactors. AIChE J 42:1350–1360. https://doi.org/10.1002/aic.690420515

    Article  CAS  Google Scholar 

  9. da Novaes LR, de Resende NS, Salim VMM, Secchi AR (2017) Modeling, simulation and kinetic parameter estimation for diesel hydrotreating. Fuel 209:184–193. https://doi.org/10.1016/j.fuel.2017.07.092

    Article  CAS  Google Scholar 

  10. Feng X, Li D, Chen J et al (2018) Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of whole fraction low-temperature coal tar. Fuel 230:113–125. https://doi.org/10.1016/j.fuel.2018.05.023

    Article  CAS  Google Scholar 

  11. Bej SK (2004) Revamping of diesel hydrodesulfurizers: options available and future research needs. Fuel Process Technol 85:1503–1517. https://doi.org/10.1016/j.fuproc.2003.07.002

    Article  CAS  Google Scholar 

  12. Ho TC (2018) A theory of ultradeep hydrodesulfurization of diesel in stacked-bed reactors. AIChE J 64:595–605. https://doi.org/10.1002/aic.15969

    Article  CAS  Google Scholar 

  13. Owusu-Boakye A, Dalai AK, Ferdous D, Adjaye J (2006) Experimental and kinetics studies of aromatic hydrogenation in a two-stage hydrotreating process using NiMo/Al2O3 and NiW/Al2O3 catalysts. Can J Chem Eng 84:572–580. https://doi.org/10.1002/cjce.5450840509

    Article  CAS  Google Scholar 

  14. Feng X, Shen Z, Li D et al (2018) Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodenitrogenation of whole-fraction low-temperature coal tar. Energy Sources 41:1–9. https://doi.org/10.1080/15567036.2018.1520360

    Article  CAS  Google Scholar 

  15. Glii SB, Orlovi AM (2021) The influence of hydrodearomatisation reaction kinetics on the modelling of sulphur and aromatics removal from diesel fuel in an industrial hydrotreating process. Energies 14:4616. https://doi.org/10.3390/en14154616

    Article  CAS  Google Scholar 

  16. Chen J, Mulgundmath V, Wang N (2011) Accounting for vapor−liquid equilibrium in the modeling and simulation of a commercial hydrotreating reactor. Ind Eng Chem Res 50:1571–1579. https://doi.org/10.1021/ie101550g

    Article  CAS  Google Scholar 

  17. Macías MJ, Ancheyta J (2004) Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes. Catal Today 98:243–252. https://doi.org/10.1016/j.cattod.2004.07.038

    Article  CAS  Google Scholar 

  18. Bakhshi Ani A, Ale Ebrahim H, Azarhoosh MJ (2015) Simulation and multi-objective optimization of a trickle-bed reactor for diesel hydrotreating by a heterogeneous model using non-dominated sorting genetic algorithm II. Energy Fuels 29:3041–3051. https://doi.org/10.1021/acs.energyfuels.5b00467

    Article  CAS  Google Scholar 

  19. Liu Y-Z, Chu G-W, Li Y-B et al (2020) Liquid-solid mass transfer in a rotating trickle-bed reactor: Mathematical modeling and experimental verification. Chem Eng Sci 220:115622. https://doi.org/10.1016/j.ces.2020.115622

    Article  CAS  Google Scholar 

  20. Ancheyta J, Muñoz JAD, Macías MJ (2005) Experimental and theoretical determination of the particle size of hydrotreating catalysts of different shapes. Catal Today 109:120–127. https://doi.org/10.1016/j.cattod.2005.08.009

    Article  CAS  Google Scholar 

  21. Dai M, Li S, Li Y et al (2021) Study on reaction types and environment in different regions of diesel deep hydrodesulfurization reactor. China Pet Process Petrochem Technol 023:10–20

    Google Scholar 

  22. Filho CA, Silva CM, Quadri MB, Macedo EA (2003) Tracer diffusion coefficients of citral and d-limonene in supercritical carbon dioxide. Fluid Phase Equilib 204:65–73. https://doi.org/10.1016/S0378-3812(02)00175-9

    Article  CAS  Google Scholar 

  23. Jarullah AT, Mujtaba IM, Wood AS (2011) Kinetic model development and simulation of simultaneous hydrodenitrogenation and hydrodemetallization of crude oil in trickle bed reactor. Fuel 90:2165–2181. https://doi.org/10.1016/j.fuel.2011.01.025

    Article  CAS  Google Scholar 

  24. Mochida I, Choi K-H (2007) Current progress in catalysts and catalysis for hydrotreating. Springer, New York, pp 257–296

    Google Scholar 

  25. Song C, Ma X (2007) Ultra-clean diesel fuels by deep desulfurization and deep dearomatization of middle distillates. In: Hsu CS, Robinson PR (eds) Practical advances in petroleum processing. Springer, New York, pp 317–372

    Google Scholar 

  26. Adam M, Calemma V, Galimberti F et al (2012) Continuum lumping kinetics of complex reactive systems. Chem Eng Sci 76:154–164. https://doi.org/10.1016/j.ces.2012.03.037

    Article  CAS  Google Scholar 

  27. Alvarez A, Ancheyta J, Centeno G, Marroquín G (2011) A modeling study of the effect of reactor configuration on the cycle length of heavy oil fixed-bed hydroprocessing. Fuel 90:3551–3560. https://doi.org/10.1016/j.fuel.2011.03.043

    Article  CAS  Google Scholar 

  28. Egorova M, Prins R (2004) Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/γ-Al2O3, CoMo/γ-Al2O3, and Mo/γ-Al2O3 catalysts. J Catal 225:417–427. https://doi.org/10.1016/j.jcat.2004.05.002

    Article  CAS  Google Scholar 

  29. Jarullah AT, Mujtaba IM, Wood AS (2011) Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of crude oil. Chem Eng Sci 66:859–871. https://doi.org/10.1016/j.ces.2010.11.016

    Article  CAS  Google Scholar 

  30. Yin Y, Chen W, Wu G et al (2020) Kinetics towards mechanism and real operation for ultra-deep hydrodesulfurization and hydrodenitrogenation of diesel. AIChE J. https://doi.org/10.22541/au.158879111.13354748

    Article  Google Scholar 

  31. Nguyen T, Teratani S, Tanaka R et al (2017) Development of a structure-based lumping kinetic model for light gas oil hydrodesulfurization. Energy Fuels 31:5673. https://doi.org/10.1021/acs.energyfuels.7b00360

    Article  CAS  Google Scholar 

  32. Nguyen TTH, Teratani S, Tanaka R et al (2017) A framework for developing a structure-based lumping kinetic model for the design and simulation of refinery reactors. Comput Chem Eng 106:385–395. https://doi.org/10.1016/j.compchemeng.2017.06.025

    Article  CAS  Google Scholar 

  33. Liu H, Li H, Zhang Y et al (2022) Asymptotic stability of Runge-Kutta method for solving nonlinear functional differential-algebraic equations. Appl Numer Math 181:277–292. https://doi.org/10.1016/j.apnum.2022.06.007

    Article  Google Scholar 

  34. Kallinikos LE, Jess A, Papayannakos NG (2010) Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil. J Catal 269:169–178. https://doi.org/10.1016/j.jcat.2009.11.005

    Article  CAS  Google Scholar 

  35. Nguyen M-T, Pirngruber GD, Chainet F et al (2019) Molecular-level insights into coker/straight-run gas oil hydrodenitrogenation by fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 33:3034–3046. https://doi.org/10.1021/acs.energyfuels.8b04432

    Article  CAS  Google Scholar 

Download references

Funding

We thank the financial support of China Petrochemical Corporation (Sinopec Group, 120051-1) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Ju, X., Nie, H. et al. Kinetic parameter estimation and simulation of the second reactor for hydrodesulfurization of diesel. Reac Kinet Mech Cat 136, 23–45 (2023). https://doi.org/10.1007/s11144-023-02361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02361-8

Keywords

Navigation