Skip to main content
Log in

Kinetics and mechanism of caffeic acid autoxidation in weakly alkaline aqueous solutions in the presence of Mg(II) ions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A large number of studies indicated that caffeic acid represents an important natural phenolic compound with many potential uses in medications and cosmetics, but also with therapeutic implications in cardiovascular diseases, various types of cancer, and neurological diseases. In this work we studied kinetics and reaction mechanism of caffeic acid autoxidation in weakly alkaline aqueous solutions (pH 7.4 and 8.4) in the presence of Mg(II) ions by applying high performance liquid chromatography with diode-array detection (HPLC–DAD) and electron spin resonance (ESR) spectroscopy. The results of HPLC–DAD analysis revealed that the presence of Mg(II) ions enhanced the autoxidation rate to a much greater extent than the increase in pH from 7.4 to 8.4. Analysis of DAD UV–Vis and ESR spectra, as well as comparison of the calculated logP values with retention times of chromatographically separated compounds, enabled the identification of the main initial products of caffeic acid autoxidation in the presence of Mg(II) ions as caffeic acid quinone and its dimer and indicated the nature of some minor products (hydroxylated derivatives of caffeic acid and their quinones). ESR spectroscopy disclosed that prolonged autoxidation of caffeic acid leads to the formation of polymeric, humic acid like, products. These findings may be important when considering treatments and/or storage of medications, cosmetics, and foods containing caffeic acid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its Supplementary Information file.

References

  1. Shahidi F, Naczk M (2004) Phenolics in food and nutraceuticals. CRC Press, Boca Raton, USA

    Google Scholar 

  2. Magnani C, Isaac VLB, Correa MA, Salgado HRN (2014) Caffeic acid: a review of its potential use in medications and cosmetics. Anal Methods 6:3203–3210. https://doi.org/10.1039/c3ay41807c

    Article  CAS  Google Scholar 

  3. Silva H, Lopes NMF (2020) Cardiovascular effects of caffeic acid and its derivatives: a comprehensive review. Front Physiol 11:595516. https://doi.org/10.3389/fphys.2020.595516

    Article  PubMed  PubMed Central  Google Scholar 

  4. Espíndola KMM, Ferreira RG, Narvaez LEM, Rosario ACRS, da Silva AHM, Silva AGB, Vieira APO, Monteiro MC (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 9:541. https://doi.org/10.3389/fonc.2019.00541

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI (2022) Potential therapeutic implications of caffeic acid in cancer signaling: past, present, and future. Front Pharmacol 13:845871. https://doi.org/10.3389/fphar.2022.845871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR (2022) Therapeutic implications of caffeic acid in cancer and neurological diseases. Front Oncol 12:860508. https://doi.org/10.3389/fonc.2022.860508

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cilliers JJL, Singleton VL (1989) Nonenzymic autoxidative phenolic browning reactions in caffeic acid model system. J Agric Food Chem 37:890–896. https://doi.org/10.1021/jf00088a013

    Article  CAS  Google Scholar 

  8. Cilliers JJL, Singleton VL (1991) Characterization of the products of nonenzymic autoxidative phenolic reactions in a caffeic acid model system. J Agric Food Chem 39:1298–1303. https://doi.org/10.1021/jf00007a021

    Article  CAS  Google Scholar 

  9. Friedman M, Jürgens HS (2000) Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem 48:2101–2110. https://doi.org/10.1021/jf990489j

    Article  CAS  PubMed  Google Scholar 

  10. Maier GP, Bernt CM, Butler A (2018) Catechol oxidation: considerations in the design of wet adhesive materials. Biomater Sci 6:332–339. https://doi.org/10.1039/c7bm00884h

    Article  CAS  PubMed  Google Scholar 

  11. García P, Romero C, Brenes M, Garrido A (1996) Effect of metal cations on the chemical oxidation of olive o-diphenols in model systems. J Agric Food Chem 44:2101–2105. https://doi.org/10.1021/jf9503265

    Article  Google Scholar 

  12. Nkhili E, Loonis M, Mihai S, El Hajji H, Dangles O (2014) Reactivity of food phenols with iron and copper ions: binding, dioxygen activation and oxidation mechanisms. Food Funct 5:1186–1202. https://doi.org/10.1039/c4fo00007b

    Article  CAS  PubMed  Google Scholar 

  13. Boilet L, Cornard JP, Lapouge C (2005) Determination of the chelating site preferentially involved in the complex of lead(II) with caffeic acid: a spectroscopic and structural study. J Phys Chem A 109:1952–1960. https://doi.org/10.1021/jp047703d

    Article  CAS  PubMed  Google Scholar 

  14. Cornard J-P, Caudron A, Merlin J-C (2006) UV-visible and synchronous fluorescence spectroscopic investigations of the complexation of Al(III) with caffeic acid, in aqueous low acidic medium. Polyhedron 25:2215–2222. https://doi.org/10.1016/j.poly.2006.01.013

    Article  CAS  Google Scholar 

  15. De Stefano C, Foti C, Giuffré O, Sammartano S (2014) Acid-base and UV behavior of 3-(3,4-dihydroxyphenyl)-propenoic acid (caffeic acid) and complexing ability towards different divalent metal cations in aqueous solutions. J Mol Liq 195:9–16. https://doi.org/10.1016/j.molliq.2014.01.027

    Article  CAS  Google Scholar 

  16. Arciszewska Ż, Gama S, Kalinowska M, Świderski G, Świsłocka R, Gołębiewska E, Naumowicz M, Worobiczuk M, Cudowski A, Pietryczuk A, De Stefano C, Milea D, Lewandowski W, Żyłkiewicz G (2022) Caffeic acid/Eu(III) complexes: solution equilibrium studies, structure characterization and biological activity. Int J Mol Sci 23:888. https://doi.org/10.3390/ijms23020888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gigliuto A, Cigala RM, Irto A, Felice MR, Pettignano A, De Stefano C, Crea F (2021) The effect of metal cations on the aqueous behavior of dopamine. Thermodynamic investigation of the binary and ternary interactions with Cd2+, Cu2+ and UO2+ in NaCl at different ionic strengths and temperatures. Molecules 26:7679. https://doi.org/10.3390/molecules26247679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McBride MB, Sikora FJ (1990) Catalyzed oxidation reactions of 1,2-dihydroxybenzene (catechol) in aerated aqueous solutions of Al3+. J Inorg Biochem 39:247–262. https://doi.org/10.1016/0162-0134(90)84008-D

    Article  CAS  Google Scholar 

  19. Lebedev AV, Ivanova MV, Timoshin AA, Ruuge EK (2007) Effect of group II metal cations on catecholate oxidation. ChemPhysChem 8:1863–1869. https://doi.org/10.1002/cphc.200700296

    Article  CAS  PubMed  Google Scholar 

  20. Živanović SC, Nikolić RS, Nikolić GM (2016) The influence of Mg(II) and Ca(II) ions on rutin autoxidation in weakly alkaline aqueous solutions. Acta Fac Med Naiss 33:163–171. https://doi.org/10.1515/afmnai-2016-0018

    Article  CAS  Google Scholar 

  21. Nikolić GM, Živanović SC, Krstić NS, Nikolić MG (2019) The study of Mg(II) ion influence on catechol autoxidation in weakly alkaline aqueous solution. Russ J Phys Chem A 93:2656–2660. https://doi.org/10.1134/S0036024419130223

    Article  Google Scholar 

  22. Nikolić GM, Krstić NS, Živanović SC, Nikolić GM (2022) The influence of Mg(II) and Ca(II) ions on the autoxidation of 4-methylcatechol in weakly alkaline aqueous solutions. Reac Kinet Mech Cat 135:1373–1386. https://doi.org/10.1007/s11144-022-02180-3

    Article  CAS  Google Scholar 

  23. Živanović SC, Veselinović AM, Mitić ŽJ, Nikolić GM (2018) The study of the influence of Mg(II) and Ca(II) ions on caffeic acid autoxidation in weakly alkaline aqueous solution using MCR-ALS analysis of spectrophotometric data. New J Chem 42:6256–6263. https://doi.org/10.1039/c8nj00871j

    Article  CAS  Google Scholar 

  24. Crichton RR (2013). In: Crichton RR, Louro RO (eds) Practical approaches to biological inorganic chemistry. Elsevier BV, Amsterdam

    Google Scholar 

  25. Monteiro CP, Matias CN, Bicho M, Santa-Clara H, Laires MJ (2016) Coordination between antioxidant defences might be partially modulated by magnesium status. Magnes Res 29:161–168. https://doi.org/10.1684/mrh.2016.0414

    Article  CAS  PubMed  Google Scholar 

  26. Lente G (2015) Deterministic kinetics in chemistry and systems biology. The dynamics of complex reaction networks. Springer, New York

    Book  Google Scholar 

  27. Lente G (2018) Facts and alternate facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  28. Pati S, Losito I, Palmisano F, Zambonin PG (2006) Characterization of caffeic acid enzymatic oxidation by-products by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. J Chromatogr A 1102:184–192. https://doi.org/10.1016/j.chroma.2005.10.041

    Article  CAS  PubMed  Google Scholar 

  29. Antolovich M, Bedgood DR Jr, Bishop AG, Jardine D, Prenzler PD, Robards K (2004) LC-MS investigation of oxidation products of phenolic antioxidants. J Agric Food Chem 52:962–971. https://doi.org/10.1021/jf0349883

    Article  CAS  PubMed  Google Scholar 

  30. Eaton DR (1964) Complexing of metal ions with semiquinones. An electron spin resonance study. Inorg Chem 3:1268–1271. https://doi.org/10.1021/ic50019a016

    Article  CAS  Google Scholar 

  31. Ozkorucuklu SP, Beltrán JL, Fonrodona G, Barrón D, Alsancak G, Barbosa J (2009) Determination of dissociation constants of some hydroxylated benzoic and cinnamic acids in water from mobility and spectroscopic data obtained by CE-DAD. J Chem Eng Data 54:807–811. https://doi.org/10.1021/je800595x

    Article  CAS  Google Scholar 

  32. Haky JE, Young AM (1984) Evaluation of a simple HPLC correlation method for the estimation of the octanol-water partition coefficients of organic compounds. J Liq Chromatogr 7:675–689. https://doi.org/10.1080/01483918408073995

    Article  CAS  Google Scholar 

  33. Mura F, Silva T, Castro C, Borges F, Zuñiga MC, Morales J, Olea-Azar C (2014) New insights in the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: spectroscopic, electrochemistry, and cellular studies. Free Rad Res 48:1473–1484. https://doi.org/10.3109/10715762.2014.965702

    Article  CAS  Google Scholar 

  34. Ferrari RP, Laurenti E (1995) ESR spin-stabilization evidence for α-methyldopa and dopamethylester o-semiquinones obtained by peroxidasic oxidation: structural characterization and mechanistic studies. J Inorg Biochem 59:811–825. https://doi.org/10.1016/0162-0134(94)00081-K

    Article  CAS  Google Scholar 

  35. Ferrari RP, Laurenti E, Ghibaudi EM, Gambino O (1996) ESR characterization and kinetics of the enzymatically obtained M(II)-dobutamine-o-semiquinone system. Res Chem Intermed 22:459–468. https://doi.org/10.1163/156856796X00665

    Article  CAS  Google Scholar 

  36. Arakawa R, Yamaguchi M, Hotta H, Osaki T, Kimoto T (2004) Product analysis of caffeic acid oxidation by on-line electrochemistry/electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 15:1228–1236. https://doi.org/10.1016/j.jasms.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  37. Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–89. https://doi.org/10.1016/S0300-483X(02)00196-8

    Article  CAS  PubMed  Google Scholar 

  38. Watanabe A, McPhail DB, Maie N, Kawasaki S, Anderson HA, Cheshire MV (2005) Electron spin resonance characteristics of humic acids from a wide range of soil types. Org Geochem 36:981–990. https://doi.org/10.1016/j.orggeochem.2005.03.002

    Article  CAS  Google Scholar 

  39. Bolton JL, Dunlap T (2017) Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol 30:13–37. https://doi.org/10.1021/acs.chemrestox.6b00256

    Article  CAS  PubMed  Google Scholar 

  40. Schieber A (2018) Reactions of quinones—mechanisms, structures, and prospects for food research. J Agric Food Chem 66:13051–13055. https://doi.org/10.1021/acs.jafc.8b05215

    Article  CAS  PubMed  Google Scholar 

  41. Meinhart AD, Damin FM, Calderião L, de Jesus FM, da Silva LC, da Silva CL, Filho JT, Wagner R, Godoy HT (2019) Chlorogenic and caffeic acid in 64 fruits consumed in Brazil. Food Chem 286:51–63. https://doi.org/10.1016/j.foodchem.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  42. Zhang L, Li Y, Liang Y, Liang K, Zhang F, Xu T, Wang M, Song H, Liu X, Lu B (2019) Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chem 276:538–546. https://doi.org/10.1016/j.foodchem.2018.10.074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Education, Science and Technological Developments of Republic of Serbia (contracts No. 451-03-68/2022-14/200124 and No. 451-03-68/2022-14/200113) for financial support.

Funding

This study was supported by Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja (Grant Nos. 451-03-68/2022-14/200113, 451-03-68/2022-14/200113, 451-03-68/2022-14/200124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran M. Nikolić.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolić, G.M., Živanović, S.C., Nikolić, M.G. et al. Kinetics and mechanism of caffeic acid autoxidation in weakly alkaline aqueous solutions in the presence of Mg(II) ions. Reac Kinet Mech Cat 136, 1169–1183 (2023). https://doi.org/10.1007/s11144-023-02358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02358-3

Keywords

Navigation