Skip to main content
Log in

Production of levulinic acid from glucose using nickel phosphate-silica catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A combination of nickel-silica and nickel phosphate is hypothesized to provide a synergistic effect on catalytic processes of LA production from glucose. This research aims to produce LA from glucose by employing nickel phosphate-silica catalysts. The effect of different phosphate catalyst precursors on the yield of LA was investigated. Catalysts were assessed by using FT-IR, SEM–EDX, XRD, and N2 adsorption–desorption isotherms. Acidity analysis for the catalysts was performed by the gravimetric method. The product of levulinic acid was examined by HPLC. The study exhibited that the incorporation of phosphate ions into nickel-silica increased the acidity of the catalyst and inherently provided an increase in LA yield. It was found that the hydrogen atoms number from different phosphate precursors showed a positive correlation to the increase in LA yield as well. Ni(H2PO4)–2SiO2 catalyst had the highest activity compared to the others catalysts on LA formation, whereas Ni3(PO4)2–SiO2 dominantly promoted formic acid formation. Further optimization by RSM-CCD showed that the optimum condition was achieved at a temperature of 113.20 °C, a reaction time of 120 min, and a catalyst weight of 0.4573 g with an LA yield of 40.89%. The quadratic model as derived from RSM-CCD demonstrated good accuracy in estimating the output parameter. This catalyst was still active at 5 consecutive runs with a slight decrease toward LA formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fanani Z, Hasanudin H, Rachmat A, Said M (2021) Comparison of Cr/C and Cr2O3/Z catalysts on hydrocracking of bio-oil from pyrolysis of palm empty fruit bunches. Molekul 16:244–252. https://doi.org/10.20884/1.jm.2021.16.3.812

    Article  CAS  Google Scholar 

  2. Galadima A, Muraza O (2020) Waste materials for production of biodiesel catalysts: Technological status and prospects. J Clean Prod 263:121358. https://doi.org/10.1016/j.jclepro.2020.121358

    Article  CAS  Google Scholar 

  3. Sari EP, Wijaya K, Trisunaryanti W, Syoufian A, Hasanudin H, Saputri WD (2022) The effective combination of zirconia superacid and zirconia-impregnated CaO in biodiesel manufacturing: utilization of used coconut cooking oil (UCCO). Int J Energy Environ Eng 13:967–978. https://doi.org/10.1007/s40095-021-00439-4

    Article  CAS  Google Scholar 

  4. Jeong GT, Kim SK (2021) Methanesulfonic acid-mediated conversion of microalgae Scenedesmus obliquus biomass into levulinic acid. J Ind Eng Chem 104:85–92. https://doi.org/10.1016/j.jiec.2021.08.013

    Article  CAS  Google Scholar 

  5. Dharne S, Bokade VV (2011) Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. J Nat Gas Chem 20:18–24. https://doi.org/10.1016/S1003-9953(10)60147-8

    Article  CAS  Google Scholar 

  6. Pyo SH, Glaser SJ, Rehnberg N, Hatti-Kaul R (2020) Clean production of levulinic acid from fructose and glucose in salt water by heterogeneous catalytic dehydration. ACS Omega 5:14275–14282. https://doi.org/10.1021/acsomega.9b04406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Signoretto M, Taghavi S, Ghedini E, Menegazzo F (2019) Catalytic production of levulinic acid (LA) from actual biomass. Molecules 24:1–20. https://doi.org/10.3390/molecules24152760

    Article  Google Scholar 

  8. Moustani C, Anagnostopoulou E, Krommyda K, Moustani C, Anagnostopoulou E, Krommyda K, Panopoulou C, Koukoulakis KG, Bakeas EB, Papadogianakis G (2018) Novel aqueous-phase hydrogenation reaction of the key biorefinery platform chemical levulinic acid into γ-valerolactone employing highly active, selective and stable water-soluble ruthenium catalysts modified with nitrogen-containing ligands. Appl Catal B Environ 238:82–92. https://doi.org/10.1016/j.apcatb.2018.07.009

    Article  CAS  Google Scholar 

  9. Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew Sustain Energy Rev 94:340–362. https://doi.org/10.1016/j.rser.2018.06.016

    Article  CAS  Google Scholar 

  10. Badgujar KC, Badgujar VC, Bhanage BM (2020) A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Process Technol 197:106213. https://doi.org/10.1016/j.fuproc.2019.106213

    Article  CAS  Google Scholar 

  11. Ranoux A, Djanashvili K, Arends IWCE, Hanefeld U (2013) 5-Hydroxymethylfurfural synthesis from hexoses is autocatalytic. ACS Catal 3:760–763. https://doi.org/10.1021/cs400099a

    Article  CAS  Google Scholar 

  12. Wei W, Wu S (2018) Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel 225:311–321. https://doi.org/10.1016/j.fuel.2018.03.120

    Article  CAS  Google Scholar 

  13. Liu B, Ba C, Jin M, Zhang Z (2015) Effective conversion of carbohydrates into biofuel precursor 5-hydroxymethylfurfural (HMF) over Cr-incorporated mesoporous zirconium phosphate. Ind Crops Prod 76:781–786. https://doi.org/10.1016/j.indcrop.2015.07.036

    Article  CAS  Google Scholar 

  14. Qu H, Liu B, Gao G, Ma Y, Zhou Y, Zhou H, Li L, Li Y, Liu S (2019) Metal-organic framework containing Br Ønsted acidity and Lewis acidity for efficient conversion glucose to levulinic acid. Fuel Process Technol 193:1–6. https://doi.org/10.1016/j.fuproc.2019.04.035

    Article  CAS  Google Scholar 

  15. Mongkolpichayarak I, Jiraroj D, Anutrasakda W, Ngamcharussrivichai C, Samec JSM, Tungasmita DN (2021) Cr/MCM-22 catalyst for the synthesis of levulinic acid from green hydrothermolysis of renewable biomass resources. J Catal 405:373–384. https://doi.org/10.1016/j.jcat.2021.12.019

    Article  CAS  Google Scholar 

  16. Zhuang JP, Li XP, Liu Y (2012) Conversion of glucose to levulinic acid using SO42-/TiO2-Al2O3-SnO2 solid acid catalysts. Adv Mater Res 550–553:234–237. https://doi.org/10.4028/www.scientific.net/AMR.550-553.234

    Article  CAS  Google Scholar 

  17. Zeng W, Cheng DG, Zhang H, Chen F, Zhan X (2010) Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions. React Kinet Mech Catal 100:377–384. https://doi.org/10.1007/s11144-010-0187-x

    Article  CAS  Google Scholar 

  18. Guzmán I, Heras A, Güemez MB, Iriondo A, Cambra JF, Requies J (2016) Levulinic acid production using solid-acid catalysis. Ind Eng Chem Res 55:5139–5144. https://doi.org/10.1021/acs.iecr.5b04190

    Article  CAS  Google Scholar 

  19. Zeng W, Cheng DG, Chen F, Zhan X (2009) Catalytic conversion of glucose on Al–Zr mixed oxides in hot compressed water. Catal Letters 133:221–226. https://doi.org/10.1007/s10562-009-0160-3

    Article  CAS  Google Scholar 

  20. Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner WC, Dumesic JA, Huber GW (2013) Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. J Catal 304:123–134. https://doi.org/10.1016/j.jcat.2013.03.023

    Article  CAS  Google Scholar 

  21. Bej B, Pradhan NC, Neogi S (2013) Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst. Catal Today 207:28–35. https://doi.org/10.1016/j.cattod.2012.04.011

    Article  CAS  Google Scholar 

  22. Mallesham B, Sudarsanam P, Reddy BVS, Rao BG, Reddy BM (2018) Nanostructured nickel/silica catalysts for continuous flow conversion of levulinic acid to γ-valerolactone. ACS Omega 3:16839–16849. https://doi.org/10.1021/acsomega.8b02008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye RP, Gong W, Sun Z, Sheng Q, Shi X, Wang T, Yao Y, Razink JJ, Lin L, Zhou Z, Adidharma H, Tang J, Fan M, Yao YG (2019) Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: derived from nickel phyllosilicate with strong metal-support interactions. Energy 188:116059. https://doi.org/10.1016/j.energy.2019.116059

    Article  CAS  Google Scholar 

  24. Tang Y, Liu Z, Guo W, Chen T, Qiao Y, Mu S, Zhao Y, Gao F (2016) Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim Acta 190:118–125. https://doi.org/10.1016/j.electacta.2016.01.042

    Article  CAS  Google Scholar 

  25. Sharma P, Radhakrishnan S, Khil MS, Kim HY, Kim BS (2018) Simple room temperature synthesis of porous nickel phosphate foams for electrocatalytic ethanol oxidation. J Electroanal Chem 808:236–244. https://doi.org/10.1016/j.jelechem.2017.12.025

    Article  CAS  Google Scholar 

  26. Ordomsky VV, Sushkevich VL, Schouten JC, Van Der Schaaf J, Nijhuis TA (2013) Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts. J Catal 300:37–46. https://doi.org/10.1016/j.jcat.2012.12.028

    Article  CAS  Google Scholar 

  27. Sun X, Wang J, Yin Y, Wang H, Li S, Liu H, Ma J, Du X (2020) Laser-Ablation-produced cobalt nickel phosphate with high-valence nickel ions as an active catalyst for the oxygen evolution reaction. Chem A Eur J 26:2793–2797. https://doi.org/10.1002/chem.201904510

    Article  CAS  Google Scholar 

  28. Li Y, Zhao C (2016) Iron-doped nickel phosphate as synergistic electrocatalyst for water oxidation. Chem Mater 28:5659–5666. https://doi.org/10.1021/acs.chemmater.6b01522

    Article  CAS  Google Scholar 

  29. Omar FS, Numan A, Duraisamy N, Bashir S, Ramesh K, Ramesh S (2016) Ultrahigh capacitance of amorphous nickel phosphate for asymmetric supercapacitor applications. RSC Adv 6:76298–76306. https://doi.org/10.1039/c6ra15111f

    Article  CAS  Google Scholar 

  30. Liu H, Haoyi L, Wang X (2016) Electrostatic Interaction-directed growth of nickel phosphate single-walled nanotubes for high performance oxygen evolution reaction catalysts. Small 12:2969–2974. https://doi.org/10.1002/smll.201600345

    Article  CAS  PubMed  Google Scholar 

  31. Chong R, Wang B, Li D, Chang Z, Zhang L (2017) Enhanced photoelectrochemical activity of Nickel-phosphate decorated phosphate-Fe2O3 photoanode for glycerol-based fuel cell. Sol Energy Mater Sol Cells 160:287–293. https://doi.org/10.1016/j.solmat.2016.10.052

    Article  CAS  Google Scholar 

  32. Limlamthong M, Chitpong N, Jongsomjit B (2019) Influence of phosphoric acid modification on catalytic properties of Al2O3 catalysts for dehydration of ethanol to diethyl ether. Bull Chem React Eng Catal 14:1–8. https://doi.org/10.9767/bcrec.14.1.2436.1-8

    Article  CAS  Google Scholar 

  33. Song X, Gao L, Li Y, Chen W, Mao L, Yang JH (2017) Nickel phosphate-based materials with excellent durability for urea electro-oxidation. Electrochim Acta 251:284–292. https://doi.org/10.1016/j.electacta.2017.08.117

    Article  CAS  Google Scholar 

  34. Hasanudin H, Asri WR, Tampubolon K, Riyant F, Purwaningrum W, Wijaya K (2022) Dehydration isopropyl alcohol to diisopropyl ether over molybdenum phosphide pillared bentonite. Pertanika J Sci Technol 30:1739–1754. https://doi.org/10.47836/pjst.30.2.47

    Article  Google Scholar 

  35. Samuel OD, Okwu MO, Oyejide OJ, Taghinezhad E, Afzal A, Kaveh M (2020) Optimizing biodiesel production from abundant waste oils through empirical method and grey wolf optimizer. Fuel 281:118701. https://doi.org/10.1016/j.fuel.2020.118701

    Article  CAS  Google Scholar 

  36. Hasanudin H, Asri WR, Said M, Hidayati PT, Purwaningrum W, Novia N, Wijaya K (2022) Hydrocracking optimization of palm oil to bio-gasoline and bio-aviation fuels using molybdenum nitride-bentonite catalyst. RSC Adv 12:16431–16443. https://doi.org/10.1039/D2RA02438A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garg A, Jain S (2020) Process parameter optimization of biodiesel production from algal oil by response surface methodology and artificial neural networks. Fuel 277:118254. https://doi.org/10.1016/j.fuel.2020.118254

    Article  CAS  Google Scholar 

  38. Yahya S, Muhamad Wahab SK, Harun FW (2020) Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology. Renew Energy 157:164–172. https://doi.org/10.1016/j.renene.2020.04.149

    Article  CAS  Google Scholar 

  39. Al-Sakkari EG, Abdeldayem OM, El-Sheltawy ST, Abadir MF, Soliman A, Rene ER, Ismail I (2020) Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study. Fuel 279:118519. https://doi.org/10.1016/j.fuel.2020.118519

    Article  CAS  Google Scholar 

  40. Qu T, Niu S, Gong Z, Han K, Wang Y, Lu C (2020) Wollastonite decorated with calcium oxide as heterogeneous transesterification catalyst for biodiesel production: optimized by response surface methodology. Renew Energy 159:873–884. https://doi.org/10.1016/j.renene.2020.06.009

    Article  CAS  Google Scholar 

  41. Tan YH, Abdullah MO, Nolasco-Hipolito C, Ahmad Zauzi NS (2017) Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO. Renew Energy 114:437–447. https://doi.org/10.1016/j.renene.2017.07.024

    Article  CAS  Google Scholar 

  42. Hasanudin H, Putri QU, Agustina TE, Hadiah F (2022) Esterification of free fatty acid in palm oil mill effluent using sulfated carbon-zeolite composite catalyst. Pertanika J Sci Technol 30:377–395. https://doi.org/10.47836/pjst.30.1.21

    Article  Google Scholar 

  43. Behera SK, Meena H, Chakraborty S, Meikap BC (2018) Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol 28:621–629. https://doi.org/10.1016/j.ijmst.2018.04.014

    Article  CAS  Google Scholar 

  44. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109:2192–2202. https://doi.org/10.1021/jp048867x

    Article  CAS  PubMed  Google Scholar 

  45. Chen X, Jin J, Sha G, Li C, Zhang B, Su D, Williams CT, Liang C (2014) Silicon-nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation. Catal Sci Technol 4:53–61. https://doi.org/10.1039/c3cy00743j

    Article  CAS  Google Scholar 

  46. Ergul E, Kurt HI, Oduncuoglu M (2020) Electroless nickel-phosphorus and cobalt-phosphorus coatings on multi-walled carbon nanotubes. Mater Res Express 7:115604. https://doi.org/10.1088/2053-1591/abcc3f

    Article  CAS  Google Scholar 

  47. Praseptiangga D, Zahara HL, Widjanarko PI, Joni IM, Panatarani C (2020) Preparation and FTIR spectroscopic studies of SiO2–ZnO nanoparticles suspension for the development of carrageenan-based bio-nanocomposite film. AIP Conf Proc 2219:100005. https://doi.org/10.1063/5.0003434

    Article  CAS  Google Scholar 

  48. Malinowski S, Tyblewski M (1979) Properties and catalytic activity of nickel phosphate catalyst. J Colloid Interface Sci 71:560–569. https://doi.org/10.1016/0021-9797(79)90329-1

    Article  CAS  Google Scholar 

  49. Kullyakool S, Danvirutai C, Siriwong K, Noisong P (2014) Determination of kinetic triplet of the synthesized Ni3(PO4)2·8H2O by non-isothermal and isothermal kinetic methods. J Therm Anal Calorim 115:1497–1507. https://doi.org/10.1007/s10973-013-3399-2

    Article  CAS  Google Scholar 

  50. Al-Omair MA, Touny AH, Saleh MM (2017) Reflux-based synthesis and electrocatalytic characteristics of nickel phosphate nanoparticles. J Power Sour 342:1032–1039. https://doi.org/10.1016/j.jpowsour.2016.09.079

    Article  CAS  Google Scholar 

  51. Ermakova MA, Ermakov DY (2003) High-loaded nickel-silica catalysts for hydrogenation, prepared by sol-gel: route—structure and catalytic behavior. Appl Catal A Gen 245:277–288. https://doi.org/10.1016/S0926-860X(02)00648-8

    Article  CAS  Google Scholar 

  52. Ni W, Li D, Zhao X, Ma W, Kong K, Gu Q, Chen M, Hou Z (2019) Catalytic dehydration of sorbitol and fructose by acid-modified zirconium phosphate. Catal Today 319:66–75. https://doi.org/10.1016/j.cattod.2018.03.034

    Article  CAS  Google Scholar 

  53. Majewski AJ, Wood J, Bujalski W (2013) Nickel-silica core@shell catalyst for methane reforming. Int J Hydrogen Energy 38:14531–14541. https://doi.org/10.1016/j.ijhydene.2013.09.017

    Article  CAS  Google Scholar 

  54. Sing KSW, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782. https://doi.org/10.1260/0263617053499032

    Article  CAS  Google Scholar 

  55. Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4:559–566. https://doi.org/10.1016/j.eng.2018.06.001

    Article  CAS  Google Scholar 

  56. Zhang Y, Shao D, Yan J, Jia X, Li Y, Yu P, Zhang T (2016) The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi formations, Sichuan Basin, China. J Nat Gas Geosci 1:213–220. https://doi.org/10.1016/j.jnggs.2016.08.002

    Article  Google Scholar 

  57. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  58. Labani MM, Rezaee R, Saeedi A, Al HA (2013) Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia. J Pet Sci Eng 112:7–16. https://doi.org/10.1016/j.petrol.2013.11.022

    Article  CAS  Google Scholar 

  59. Yaripour F, Baghaei F, Schmidt I, Perregaarad J (2005) Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts. Catal Commun 6:542–549. https://doi.org/10.1016/j.catcom.2005.05.003

    Article  CAS  Google Scholar 

  60. González-castaño M, Le SE, Berry C, Pastor-pérez L, Arellano-garcía H, Wang Q, Reina TR (2021) Nickel phosphide catalysts as efficient systems for CO2 upgrading via dry reforming of methane. Catalysts 11:1–11. https://doi.org/10.3390/catal11040446

    Article  CAS  Google Scholar 

  61. Wijaya K, Malau LLM, Utami M, Mulijani S, Patah A, Wibowo AC, Chandrasekaran M, Rajabathar JR, Al-Lohedan HA (2021) Synthesis, characterizations and catalysis of sulfated silica and nickel modified silica catalysts for diethyl ether (DEE) production from ethanol towards renewable energy applications. Catalysts 11:1511. https://doi.org/10.3390/catal11121511

    Article  CAS  Google Scholar 

  62. Busca G (2019) Catalytic materials based on silica and alumina: Structural features and generation of surface acidity. Prog Mater Sci 104:215–249. https://doi.org/10.1016/j.pmatsci.2019.04.003

    Article  CAS  Google Scholar 

  63. Hauli L, Wijaya K, Armunanto R (2018) Preparation and characterization of sulfated zirconia from a commercial zirconia nanopowder. Orient J Chem 34:1559–1564. https://doi.org/10.13005/ojc/340348

    Article  CAS  Google Scholar 

  64. Zaccheria F, Santoro F, Iftitah ED, Ravasio N (2018) Brønsted and lewis solid acid catalysts in the valorization of citronellal. Catalysts 8:410. https://doi.org/10.3390/catal8100410

    Article  CAS  Google Scholar 

  65. Reddy CR, Bhat YS, Nagendrappa G, Jai Prakash BS (2009) Brønsted and Lewis acidity of modified montmorillonite clay catalysts determined by FT-IR spectroscopy. Catal Today 141:157–160. https://doi.org/10.1016/j.cattod.2008.04.004

    Article  CAS  Google Scholar 

  66. Marianou AA, Michailof CM, Pineda A, Iliopoulou EF, Triantafyllidis KS, Lappas AA (2018) Effect of Lewis and Br Ønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media. Appl Catal A Gen 555:75–87. https://doi.org/10.1016/j.apcata.2018.01.029

    Article  CAS  Google Scholar 

  67. Jiang L, Zhou L, Chao J, Zhao H, Lu T, Su Y, Yang X, Xu J (2018) Direct catalytic conversion of carbohydrates to methyl levulinate: synergy of solid Br Ønsted acid and Lewis acid. Appl Catal B Environ 220:589–596. https://doi.org/10.1016/j.apcatb.2017.08.072

    Article  CAS  Google Scholar 

  68. Hasanudin H, Asri WR, Zulaikha IS, Ayu C, Rachmat A, Riyanti F, Hadiah F, Zainul R, Maryana R (2022) Hydrocracking of crude palm oil to a biofuel using zirconium nitride and zirconium phosphide-modified bentonite. RSC Adv 12:21916–21925. https://doi.org/10.1039/d2ra03941a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sinhamahapatra A, Sutradhar N, Roy B, Tarafdar A, Bajaj HC, Panda AB (2010) Mesoporous zirconium phosphate catalyzed reactions: Synthesis of industrially important chemicals in solvent-free conditions. Appl Catal A Gen 385:22–30. https://doi.org/10.1016/j.apcata.2010.06.016

    Article  CAS  Google Scholar 

  70. Kumar K, Kumar M, Upadhyayula S (2021) Catalytic conversion of glucose into levulinic acid using 2-phenyl-2-imidazoline based ionic liquid catalyst. Molecules. https://doi.org/10.3390/molecules26020348

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shahedi M, Habibi Z, Yousefi M, Mohammadi M, Brask J (2021) Improvement of biodiesel production from palm oil by co-immobilization of Thermomyces lanuginosa lipase and Candida antarctica lipase B: optimization using response surface methodology. Int J Biol Macromol 170:490–502. https://doi.org/10.1016/j.ijbiomac.2020.12.181

    Article  CAS  PubMed  Google Scholar 

  72. Said M, Ba-Abbad MM, Abdullah SRS, Mohammad AW (2017) Application of response surface method in reverse osmosis membrane to optimize BOD, COD and colour removal from palm oil mill effluent. Int J Adv Sci Eng Inf Technol 7:1871–1878. https://doi.org/10.18517/ijaseit.7.5.1844

    Article  Google Scholar 

  73. Narula V, Khan MF, Negi A, Kalra S, Thakur A, Jain S (2017) Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology. Energy 140:879–884. https://doi.org/10.1016/j.energy.2017.09.028

    Article  CAS  Google Scholar 

  74. Helmi M, Tahvildari K, Hemmati A, Aberoomand azar P, Safekordi A, (2020) Phosphomolybdic acid/graphene oxide as novel green catalyst using for biodiesel production from waste cooking oil via electrolysis method: Optimization using with response surface methodology (RSM). Fuel 287:119528. https://doi.org/10.1016/j.fuel.2020.119528

    Article  CAS  Google Scholar 

  75. Pooja S, Anbarasan B, Ponnusami V, Arumugam A (2021) Efficient production and optimization of biodiesel from kapok (Ceiba pentandra) oil by lipase transesterification process: addressing positive environmental impact. Renew Energy 165:619–631. https://doi.org/10.1016/j.renene.2020.11.053

    Article  CAS  Google Scholar 

  76. Sharma M, Toor AP, Wanchoo RK (2014) Reaction kinetics of catalytic esterification of nonanoic acid with ethanol over amberlyst 15. Int J Chem React Eng 12:451–463. https://doi.org/10.1515/ijcre-2014-0068

    Article  CAS  Google Scholar 

  77. Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15:5258–5272. https://doi.org/10.3390/molecules15085258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ramli NAS, Amin NAS (2015) Optimization of oil palm fronds conversion to levulinic acid using Fe/HY zeolite catalyst. Sains Malaysiana 44:883–890. https://doi.org/10.17576/jsm-2015-4406-15

    Article  CAS  Google Scholar 

  79. Booramurthy VK, Kasimani R, Subramanian D, Pandian S (2020) Production of biodiesel from tannery waste using a stable and recyclable nano-catalyst: An optimization and kinetic study. Fuel 260:116373. https://doi.org/10.1016/j.fuel.2019.116373

    Article  CAS  Google Scholar 

  80. Ramli NAS, Amin NAS (2017) Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. Bioenergy Res 10:50–63. https://doi.org/10.1007/s12155-016-9778-3

    Article  CAS  Google Scholar 

  81. Bokade V, Moondra H, Niphadkar P (2020) Highly active Brønsted acidic silicon phosphate catalyst for direct conversion of glucose to levulinic acid in MIBK–water biphasic system. SN Appl Sci. https://doi.org/10.1007/s42452-019-1827-z

    Article  Google Scholar 

  82. Ramli NAS, Amin NAS (2015) Optimization of renewable levulinic acid production from glucose conversion catalyzed by Fe/HY zeolite catalyst in aqueous medium. Energy Convers Manag 95:10–19. https://doi.org/10.1016/j.enconman.2015.02.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Biofuel Research Group, Biofuel Research Group, Laboratory of Physical Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya for providing research resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasanudin Hasanudin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 366 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putri, Q.U., Hasanudin, H., Asri, W.R. et al. Production of levulinic acid from glucose using nickel phosphate-silica catalyst. Reac Kinet Mech Cat 136, 287–309 (2023). https://doi.org/10.1007/s11144-022-02334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02334-3

Keywords

Navigation