Skip to main content
Log in

Mechanism of Ag(I)-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 30 December 2022

This article has been updated

Abstract

The mononuclear and binuclear mechanisms of Ag(I)-catalyzed azide-alkyne cycloaddition (AgAAC) reaction of benzyl azide with phenyl alkyne in gas phase and the presence of toluene as a solvent for formation of the 1,4-disubstituted 1,2,3-triazoles have been investigated by DFT calculations using MN12-L and MN15-L functionals with both basis sets Def2-TZVP including a pseudopotential for Ag and Def2-SVP for the mean elements. The effect of the PPh3, 2-(diphenylphosphaneyl)-N,N-diisopropylbenzamide, and 2-(di-tert-butylphosphaneyl)-N,N-diiso-propylbenzamide (L1, L2, and L3) as ligands on the catalytic cycle has been studied in both mononuclear and binuclear pathways. DFT calculations with MN12-L and MN15-L functionals show that the AgAAC reaction favors the mononuclear pathway by comparison with the uncatalyzed reaction for the formation of 1,4-regioisomer. On the other hand, in the AgAAC reaction, the comparison between the mononuclear and binuclear pathways indicates that the free energy barrier of the mononuclear paths is higher than that of the binuclear cases for L1 ligand, and vice versa for L2 and L3 ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Michael A, Auf UDEVD (1893) Acetylendicarbonsäuremethylester. J Prakt Chem 48:94–95

    Article  Google Scholar 

  2. Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed Engl 2(10):565–598. https://doi.org/10.1002/anie.196305651

    Article  Google Scholar 

  3. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064. https://doi.org/10.1021/jo011148j

    Article  CAS  PubMed  Google Scholar 

  4. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 114(14):2708–2711. https://doi.org/10.1002/1521-3773(20020715)41:14%3C2596::aid-anie2596%3E3.0.co;2-4

    Article  Google Scholar 

  5. Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Fokin VV (2008) Ruthenium-catalyzed azide−alkyne cycloaddition: scope and mechanism. J Am Chem Soc 130(28):8923–8930. https://doi.org/10.1021/ja0749993

    Article  CAS  PubMed  Google Scholar 

  6. Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N (2016) Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism, and applications. Chem Rev 116(23):14726–14768. https://doi.org/10.1021/acs.chemrev.6b00466

    Article  CAS  PubMed  Google Scholar 

  7. Wei F, Wang W, Ma Y, Tung CH, Xu Z (2016) Regioselective synthesis of multisubstituted 1,2,3-triazoles: moving beyond the copper-catalyzed azide–alkyne cycloaddition. Chem Commun 52(99):14188–14199. https://doi.org/10.1039/C6CC06194J

    Article  CAS  Google Scholar 

  8. Wang C, Ikhlef D, Kahlal S, Saillard JY, Astruc D (2016) Metal-catalyzed azide-alkyne “click” reactions: mechanistic overview and recent trends. Coord Chem Rev 316:1–20. https://doi.org/10.1016/j.ccr.2016.02.010

    Article  CAS  Google Scholar 

  9. Alemán Sierra E (2019). Síntesis Sostenible de Glicoestructuras con Aplicación en Procesos Infecciosos. https://doi.org/10.1016/j.tet.2019.05.046

    Article  Google Scholar 

  10. Kalra P, Kaur R, Singh G, Singh H, Singh G, Kaur G, Singh J (2021) Metals as “Click” catalysts for alkyne-azide cycloaddition reactions: an overview. J Organomet Chem 944:121846. https://doi.org/10.1016/j.jorganchem.2021.121846

    Article  CAS  Google Scholar 

  11. Presolski SI, Hong V, Cho SH, Finn MG (2010) Tailored ligand acceleration of the Cu-catalyzed azide−alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc 132(41):14570–14576. https://doi.org/10.1021/ja105743g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dumoulin F, Ahsen V (2011) Click chemistry: the emerging role of the azide-alkyne Huisgen dipolar addition in the preparation of substituted tetrapyrrolic derivatives. J Porphyrins Phthalocyanines 15(07–08):481–504. https://doi.org/10.1142/S1088424611003434

    Article  CAS  Google Scholar 

  13. Wenska M, Alvira M, Steunenberg P, Stenberg Å, Murtola M, Strömberg R (2011) An activated triple bond linker enables ‘click’ attachment of peptides to oligonucleotides on solid support. Nucleic Acids Res 39(20):9047–9059. https://doi.org/10.1093/nar/gkr603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nia AS, Rana S, Döhler D, Noirfalise X, Belfiore A, Binder WH (2014) Click chemistry promoted by graphene supported copper nanomaterials. Chem Commun 50(97):15374–15377. https://doi.org/10.1039/C4CC07774A

    Article  CAS  Google Scholar 

  15. Cantel S, Halperin JA, Chorev M, Scrima M, D’Ursi AM, Levy JJ, Papini AM (2009) Side chain-to-side chain cyclization by intramolecular click reaction-building blocks, solid phase synthesis and conformational characterization. Peptides for Youth. Springer, New York, pp 175–176

    Chapter  Google Scholar 

  16. Kamaruddin MA, Ung P, Hossain MI, Jarasrassamee B, O’Malley W, Thompson P, Graham B (2011) A facile, click chemistry-based approach to assembling fluorescent chemosensors for protein tyrosine kinases. Bioorg Med Chem Lett 21(1):329–331. https://doi.org/10.1016/j.bmcl.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  17. Boisselier E, Salmon L, Ruiz J, Astruc D (2008) How to very efficiently functionalize gold nanoparticles by “click” chemistry. Chem Commun 44:5788–5790. https://doi.org/10.1039/B812249K

    Article  Google Scholar 

  18. Jiang Q, Xiao N, Shi P, Zhu Y, Guo Z (2007) Design of artificial metallonucleases with oxidative mechanism. Coord Chem Rev 251(15–16):1951–1972. https://doi.org/10.1016/j.ccr.2007.02.013

    Article  CAS  Google Scholar 

  19. McNulty J, Keskar K, Vemula R (2011) The First Well-Defined Silver (I)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature. Chemistry 17(52):14727–14730. https://doi.org/10.1002/chem.201103244

    Article  CAS  PubMed  Google Scholar 

  20. McNulty J, Keskar K (2012) Discovery of a robust and efficient homogeneous silver (I) catalyst for the cycloaddition of azides onto terminal alkynes. Eur J Org Chem 2012(28):5462–5470. https://doi.org/10.1002/ejoc.201200930

    Article  CAS  Google Scholar 

  21. Connell TU, Schieber C, Silvestri IP, White JM, Williams SJ, Donnelly PS (2014) Copper and silver complexes of tris (triazole) amine and tris (benzimidazole) amine ligands: evidence that catalysis of an azide-alkyne cycloaddition (“click”) reaction by a silver tris (triazole) amine complex arises from copper impurities. Inorg Chem 53(13):6503–6511. https://doi.org/10.1021/ic5008999

    Article  CAS  PubMed  Google Scholar 

  22. Boz E, Tüzün NŞ (2016) Ag-catalyzed azide alkyne cycloaddition: a DFT approach. Dalton Trans 45(13):5752–5764. https://doi.org/10.1039/C5DT04902D

    Article  CAS  PubMed  Google Scholar 

  23. Banerji B, Chandrasekhar K, Killi SK, Pramanik SK, Uttam P, Sen S, Maiti NC (2016) Silver-catalysed azide–alkyne cycloaddition (AgAAC): assessing the mechanism by density functional theory calculations. R Soc Open Sci 3(9):160090. https://doi.org/10.1098/rsos.160090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sultana J, Sarma D (2020) Ag-catalyzed azide-alkyne cycloaddition: copper free approaches for synthesis of 1,4-disubstituted 1,2,3-triazoles. Catal Rev 62(1):96–117. https://doi.org/10.1080/01614940.2019.1673443

    Article  CAS  Google Scholar 

  25. Ortega-Arizmendi AI, Aldeco-Pérez E, Cuevas-Yañez E (2013) Alkyne-azide cycloaddition catalyzed by silver chloride and “abnormal” silver N-heterocyclic carbene complex. Sci World J. https://doi.org/10.1155/2013/186537

    Article  Google Scholar 

  26. Ali AA, Chetia M, Saikia B, Saikia PJ, Sarma D (2015) AgN (CN) 2/DIPEA/H2O-EG: a highly efficient catalytic system for synthesis of 1,4-disubstituted-1,2,3 triazoles at room temperature. Tetrahedron Lett 56(43):5892–5895. https://doi.org/10.1016/j.tetlet.2015.09.025

    Article  CAS  Google Scholar 

  27. Ferretti AM, Ponti A, Molteni G (2015) Silver (I) oxide nanoparticles as a catalyst in the azide–alkyne cycloaddition. Tetrahedron Lett 56(42):5727–5730. https://doi.org/10.1016/J.TETLET.2015.08.083

    Article  CAS  Google Scholar 

  28. Wang S, Yang LJ, Zeng JL, Zheng Y, Ma JA (2015) Silver-catalyzed [3+2] cycloaddition of isocyanides with diazo compounds: new regioselective access to 1,4-disubstituted-1,2,3-triazoles. Org Chem Front 2(11):1468–1474. https://doi.org/10.1039/C5QO00219B

    Article  CAS  Google Scholar 

  29. Worrell BT, Malik JA, Fokin VV (2013) Direct evidence of a dinuclear copper intermediate in Cu (I)-catalyzed azide-alkyne cycloadditions. Science 340(6131):457–460. https://doi.org/10.1126/science.1229506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin L, Romero EA, Melaimi M, Bertrand G (2015) The Janus face of the X ligand in the copper-catalyzed azide–alkyne cycloaddition. J Am Chem Soc 137(50):15696–15698. https://doi.org/10.1021/jacs.5b11028

    Article  CAS  PubMed  Google Scholar 

  31. Boz E, Tüzün NŞ (2013) Reaction mechanism of ruthenium-catalyzed azide–alkyne cycloaddition reaction: a DFT study. J Organomet Chem 724:167–176. https://doi.org/10.1016/j.jorganchem.2012.11.011

    Article  CAS  Google Scholar 

  32. Ben El Ayouchia H, Bahsis L, Fichtali I, Domingo LR, Ríos-Gutiérrez M, Julve M, Stiriba SE (2020) Deciphering the mechanism of silver catalysis of “click” chemistry in water by combining experimental and MEDT studies. Catalysts 10(9):956. https://doi.org/10.3390/catal10090956

    Article  CAS  Google Scholar 

  33. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133(13):134105. https://doi.org/10.1063/1.3484283

    Article  CAS  PubMed  Google Scholar 

  34. Hellweg A, Rappoport D (2015) Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys Chem Chem Phys 17(2):1010–1017. https://doi.org/10.1039/C4CP04286G

    Article  CAS  PubMed  Google Scholar 

  35. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, D. J. (2016). Gaussian 16 revision a. 03. 2016; Gaussian Inc., Wallingford.

  36. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681. https://doi.org/10.1002/jcc.10189

    Article  CAS  PubMed  Google Scholar 

  37. Sculfort S, Braunstein P (2011) Intramolecular d10–d10 interactions in heterometallic clusters of the transition metals. Chem Soc Rev 40(5):2741–2760. https://doi.org/10.1039/C0CS00102C

    Article  CAS  PubMed  Google Scholar 

  38. Zheng SL, Zhang JP, Wong WT, Chen XM (2003) A novel, highly electrical conducting, single-component molecular material: [Ag2 (ophen) 2](Hophen= 1 H-[1, 10] phenanthrolin-2-one). J Am Chem Soc 125(23):6882–6883. https://doi.org/10.1021/ja029097a

    Article  CAS  PubMed  Google Scholar 

  39. Calvo-Losada S, Pino-González MS, Quirante JJ (2015) Rationalizing the catalytic activity of copper in the cycloaddition of azide and alkynes (CuAAC) with the topology of∇ 2ρ (r) and∇∇ 2ρ (r). J Phys Chem B 119(4):1243–1258. https://doi.org/10.1021/jp5055414

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Khairbek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original publication of the article, copyright statement was incorrectly published.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairbek, A.A., Badawi, M.A.AH. Mechanism of Ag(I)-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation. Reac Kinet Mech Cat 136, 69–81 (2023). https://doi.org/10.1007/s11144-022-02316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02316-5

Keywords

Navigation