Skip to main content
Log in

Hydrogenation of carbon dioxide to formic acid over Pd doped thermally activated Ni/Al layered double hydroxide

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Our report here describes the catalytic reduction of CO2 to formic acid by PdNi bimetallic species supported on layered double hydroxides (referred here as LDO). The catalysts were characterized by physicochemical and spectroscopic techniques such as XRD, FT-IR, XPS, TEM, SEM, BET, ICP and TPD analysis. The catalysts were active for reduction of CO2 to formate under alkaline medium. In particular, Pd-Ni LDO catalyst with high Ni to Pd atomic ratio not only showed significantly improved catalytic activity (256 TON) but also maintained robust nature for multiple catalytic cycles (5th catalytic run) with no leaching of active metals. Further, on the basis of density functional theory (DFT) calculations, effect of Pd doping on the catalytic performance of Ni-LDO was discussed. This work provides an interesting and effective strategy wherein addition of precious metal Pd in small amounts (up to 0.5 wt%) on Ni-LDO is sufficient to improve the catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Florides GA, Christodoulides P (2009) Global warming and carbon dioxide through sciences. Environ Int 35:390–401. https://doi.org/10.1016/j.envint.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  2. Le Quéré C, Moriarty R, Zeng N et al (2015) Global carbon budget 2015. Earth Syst Sci Data 7:349–396. https://doi.org/10.5194/essd-7-349-2015

    Article  Google Scholar 

  3. Roberts CB, Elbashir NO (2003) An overview to ‘Advances in C1 chemistry in the year 2002.’ Fuel Process Technol 83:1–9. https://doi.org/10.1016/s0378-3820(03)00081-x

    Article  CAS  Google Scholar 

  4. Dabral S, Schaub T (2019) The use of carbon dioxide (CO2) as a building block in organic synthesis from an industrial perspective. Adv Synth Catal 361:223–246. https://doi.org/10.1002/adsc.201801215

    Article  CAS  Google Scholar 

  5. Wang T, Ren D, Huo Z, Song Z, Jin F, Chen M, Chen L (2017) A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water. Green Chem 19:716–721. https://doi.org/10.1039/c6gc02866g

    Article  CAS  Google Scholar 

  6. Moret S, Dyson PJ, Laurenczy G (2014) Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat Commun 5:4017. https://doi.org/10.1038/ncomms5017

    Article  CAS  PubMed  Google Scholar 

  7. Rohan M (2014) Formic Acid Market worth $618,808.7 Thousand by 2019

  8. Mori K, Taga T, Yamashita H (2017) Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal 7:3147–3151. https://doi.org/10.1021/acscatal.7b00312

    Article  CAS  Google Scholar 

  9. Gunasekar GH, Park K, Jung K-D, Yoon S (2016) Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts. Inorg Chem Front 3:882–895. https://doi.org/10.1039/c5qi00231a

    Article  CAS  Google Scholar 

  10. Jessop PG, Ikariya T, Noyori R (2002) Homogeneous hydrogenation of carbon dioxide. Chem Rev 95:259–272. https://doi.org/10.1021/cr00034a001

    Article  Google Scholar 

  11. Weilhard A, Qadir MI, Sans V, Dupont J (2018) Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids. ACS Catal 8:1628–1634. https://doi.org/10.1021/acscatal.7b03931

    Article  CAS  Google Scholar 

  12. Bulushev DA, Ross JRH (2018) Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates. Catal Rev: Sci Eng 60:566–593. https://doi.org/10.1080/01614940.2018.1476806

    Article  CAS  Google Scholar 

  13. Kabra SK, Turpeinen E, Huuhtanen M, Keiski RL, Yadav GD (2016) Direct synthesis of formic acid from carbon dioxide and hydrogen: a thermodynamic and experimental study using poly-urea encapsulated catalysts. Chem Eng 285:625–634. https://doi.org/10.1016/j.cej.2015.09.101

    Article  CAS  Google Scholar 

  14. Wu L, Liu Q, Jackstell R, Beller M (2015) Recent progress in carbon dioxide reduction using homogeneous catalysts. In: Lu XB (ed) Carbon dioxide and organometallics topics in organometallic chemistry, vol 53. Springer, Cham. https://doi.org/10.1007/3418_2015_109

    Chapter  Google Scholar 

  15. Preti D, Squarcialupi S, Fachinetti G (2012) Conversion of syngas into formic acid. ChemCatChem 4:469–471. https://doi.org/10.1002/cctc.201200046

    Article  CAS  Google Scholar 

  16. Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676. https://doi.org/10.1002/cctc.201200591

    Article  CAS  Google Scholar 

  18. Upadhyay P, Srivastava V (2015) Synthesis of monometallic Ru/TiO2 catalysts and selective hydrogenation of CO2 to formic acid in ionic liquid. Catal Lett 146:12–21. https://doi.org/10.1007/s10562-015-1654-9

    Article  CAS  Google Scholar 

  19. Nguyen LTM, Park H, Banu M, Kim JY, Youn DH, Magesh G, Kim WY, Lee JS (2015) Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts. RSC Adv 5:105560–105566. https://doi.org/10.1039/c5ra21017h

    Article  CAS  Google Scholar 

  20. Antonyraj CA, Srinivansn K (2013) One-step hydroxylation of benzene to phenol over layered double hydroxides and their derived forms. Catal Surv Asia 17:47–70. https://doi.org/10.1007/s10563-013-9153-8

    Article  CAS  Google Scholar 

  21. Ji EK, Ki- KB, Chu SP, Kyoung SK (2019) Electrochemical characterization of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysis. J Ind Eng Chem (Amsterdam Netherlands) 70:160–168. https://doi.org/10.1016/j.jiec.2018.10.010

    Article  CAS  Google Scholar 

  22. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  23. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  25. Erdeniz D, Ando T (2013) Fabrication of micro/nano structured aluminum–nickel energetic composites by means of ultrasonic powder consolidation. Int J Mater Res 104:386–391. https://doi.org/10.3139/146.110874

    Article  CAS  Google Scholar 

  26. Zhang X, Ikram M, Liu Z, Teng L, Xue J, Wang D, Li L, Shi K (2019) Expanded graphite/NiAl layered double hydroxide nanowires for ultra-sensitive, ultra-low detection limits and selective NOx gas detection at room temperature. RSC Adv 9:8768–8777. https://doi.org/10.1039/c9ra00526a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alzhrani G, Ahmed NS, Aazam ES, Saleh TS, Mokhtar M (2019) Novel efficient Pd-Free Ni-layered double hydroxide catalysts for a suzuki C–C coupling reaction. ChemistrySelect 4:7904–7911. https://doi.org/10.1002/slct.201900890

    Article  CAS  Google Scholar 

  28. Saikia P, NgB A, Borah A, Goswamee RL (2017) Iso-conversional kinetics study on thermal degradation of Ni-Al layered double hydroxide synthesized by ‘soft chemical’ sol-gel method. Mater Chem Phys 186:52–60. https://doi.org/10.1016/j.matchemphys.2016.10.028

    Article  CAS  Google Scholar 

  29. Han D, Chen Y, Wang S, Xiao M, Lu Y, Meng Y (2018) Effect of alkali-doping on the performance of diatomite supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate. Catalysts 8:302. https://doi.org/10.3390/catal8080302

    Article  CAS  Google Scholar 

  30. Prymak I, Kalevaru VN, Wohlrab S, Martin A (2015) Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce–Zr–O catalysts. Catal Sci Technol 5:2322–2331. https://doi.org/10.1039/c4cy01400f

    Article  CAS  Google Scholar 

  31. Prakash R, Kumar S, Kumar V, Choudhary RJ, Phase DM (2016) Optical and x-ray photoelectron spectroscopy studies of α-Al2O3. Paper presented at the DAE Solid State Physics Symposium 2015

  32. Huttel Y, Navarro E, Telling ND, van der Laan G, Pigazo F, Palomares FJ, Quintana C, Roman E, Armelles G, Cebollada A (2008) Interface alloying effects in the magnetic properties of Fe nanoislands capped with different materials. Phys Rev B 78:104403. https://doi.org/10.1103/PhysRevB.78.104403

    Article  CAS  Google Scholar 

  33. Jeyadevan B, Cuya JL, Inoue Y, Shinoda K, Ito T, Mott D, Higashimine K, Maenosono S, Matsumoto T, Miyamura H (2014) Novel nickel–palladium catalysts encased in a platinum nanocage. RSC Adv 4:26667–26672. https://doi.org/10.1039/c4ra03091e

    Article  CAS  Google Scholar 

  34. Hosseini MG, Hosseinzadeh F, Zardari P, Mermer O (2018) Pd-Ni nanoparticle supported on reduced graphene oxide and multi-walled carbon nanotubes as electrocatalyst for oxygen reduction reaction. Fullerenes Nanotubes Carbon Nanostruct 26:675–687. https://doi.org/10.1080/1536383x.2018.1465049

    Article  CAS  Google Scholar 

  35. Khan IA, Ullah S, Nasim F, Choucair M, Nadeem MA, Iqbal A, Badshah A, Nadeem MA (2016) Cr2O3–carbon composite as a new support material for efficient methanol electrooxidation. Mater Res Bull 77:221–227. https://doi.org/10.1016/j.materresbull.2016.01.037

    Article  CAS  Google Scholar 

  36. Chandraraj A, Saurav CS, Neena SJ (2020) Competing effect of Co3+ reducibility and oxygen-deficient defects toward high oxygen evolution activity in Co3O4 systems in alkaline medium. ACS Appl Energy Mater 3:5439–5447. https://doi.org/10.1021/acsaem.0c00297

    Article  CAS  Google Scholar 

  37. Peng W, Yiyin H, Longtian K, Yaobing W (2015) Multisource synergistic electrocatalytic oxidation effect of strongly coupled PdM (M = Sn, Pb)/N-doped graphene nanocomposite on small organic molecules. Sci Rep 5:14173. https://doi.org/10.1038/srep14173

    Article  CAS  Google Scholar 

  38. Gawande MB, Pandey RK, Jayaram RV (2012) Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal Sci Technol 2:1113–1125. https://doi.org/10.1039/c2cy00490a

    Article  CAS  Google Scholar 

  39. Wachs IE, Routray K (2012) Catalysis science of bulk mixed oxides. ACS Catal 2:1235–1246. https://doi.org/10.1021/cs2005482

    Article  CAS  Google Scholar 

  40. Wang X, Perret N, Delannoy L, Louis C, Keane MA (2016) Selective gas phase hydrogenation of nitroarenes over Mo2C-supported Au–Pd. Catal Sci Technol 6:6932–6941. https://doi.org/10.1039/c6cy00514d

    Article  CAS  Google Scholar 

  41. Mitchell CE, Terranova U, Alshibane I, Morgan DJ, Davies TE, He Q, Hargreaves JSJ, Sankar M, de Leeuw NH (2019) Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide. New J Chem 43:13985–13997. https://doi.org/10.1039/c9nj02114k

    Article  CAS  Google Scholar 

  42. Vogt C, Monai M, Sterk EB, Palle J, Melcherts AEM, Zijlstra B, Groeneveld E, Berben PH, Boereboom JM, Hensen EJM, Meirer F, Filot IAW, Weckhuysen BM (2019) Understanding carbon dioxide activation and carbon-carbon coupling over nickel. Nat Commun 10:5330. https://doi.org/10.1038/s41467-019-12858-3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Millet MM, Algara-Siller G, Wrabetz S, Mazheika A, Girgsdies F, Teschner D, Seitz F, Tarasov A, Levchenko SV, Schlogl R, Frei E (2019) Ni Single atom catalysts for CO2 activation. J Am Chem Soc 141:2451–2461. https://doi.org/10.1021/jacs.8b11729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luo L, Wang Y, Zhu M, Cheng X, Zhang X, Meng X, Huang X, Hao H (2019) Co–Cu–Al layered double oxides as heterogeneous catalyst for enhanced degradation of organic pollutants in wastewater by activating peroxymonosulfate: performance and synergistic effect. Ind Eng Chem Res 58:8699–8711. https://doi.org/10.1021/acs.iecr.9b00167

    Article  CAS  Google Scholar 

  45. Jessop PG, Joó F, Tai C-C (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248:2425–2442. https://doi.org/10.1016/j.ccr.2004.05.019

    Article  CAS  Google Scholar 

  46. Sápi A, Rajkumar T, Kiss J, Kukovecz Á, Kónya Z, Somorjai GA (2021) Metallic nanoparticles in heterogeneous catalysis. Catal Lett 151:2153–2175. https://doi.org/10.1007/s10562-020-03477-5

    Article  CAS  Google Scholar 

  47. Sivanesan D, Song KH, Jeong SK, Kim HJ (2019) Hydrogenation of CO2 to formate using a tripodal-based nickel catalyst under basic conditions. Catal Commun 120:66–71. https://doi.org/10.1016/j.catcom.2018.11.016

    Article  CAS  Google Scholar 

  48. Norazian IS, Suraya AR, Norhafizah A, Amran TMT, Alias N (2014) Effect of catalyst concentration on performance of hybrid CNT-carbon fibre nanocomposite. Adv Mater Res (Durnten-Zurich Switzerland) 974:15–19. https://doi.org/10.4028/www.scientific.net/AMR.974.15

    Article  CAS  Google Scholar 

  49. Hou ZS, Han BX, Zhang XG, Zhang HF, Liu ZM (2001) Pressure tuning of reaction equilibrium of esterification of acetic acid with ethanol in compressed CO2. J Phys Chem B 105:4510–4513. https://doi.org/10.1021/jp003903n

    Article  CAS  Google Scholar 

  50. Preti D, Resta C, Squarcialupi S, Fachinetti G (2011) Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew Chem Int Ed Engl 50:12551–12554. https://doi.org/10.1002/anie.201105481

    Article  CAS  PubMed  Google Scholar 

  51. Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115:12936–12973. https://doi.org/10.1021/acs.chemrev.5b00197

    Article  CAS  PubMed  Google Scholar 

  52. Molnár Á, Papp A (2017) Catalyst recycling—A survey of recent progress and current status. Coord Chem Rev 349:1–65. https://doi.org/10.1016/j.ccr.2017.08.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CSIR-CSMCRI communication No. CSIR-CSMCRI-108/2022. M.M. thanks CSIR, New Delhi, for a Senior Research Fellowship. The authors thank CSIR, New Delhi for financial support under the projects OLP-0031, CSC-0123, and MLP-0028. The authors thanks to Analytical Division & Centralized Instrumentation facilities of this institute for analytical support. Dr. S. Saravanan, Dr. Lakhya JyotiKonwar, and Dr. P. S. Subramanian are acknowledged for their encouragement and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

MM: data curation, investigation, visualization, writing—original draft; TS: investigation, data curation; SM: data curation; KS: conceptualization, supervision, funding acquisition, writing—review and editing, and project administration.

Corresponding author

Correspondence to Kannan Srinivasan.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 985 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariyaselvakumar, M., Selvaraj, T., More, S. et al. Hydrogenation of carbon dioxide to formic acid over Pd doped thermally activated Ni/Al layered double hydroxide. Reac Kinet Mech Cat 135, 3007–3019 (2022). https://doi.org/10.1007/s11144-022-02315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02315-6

Keywords

Navigation