Skip to main content
Log in

Immobilized magnetic copper hydrazone complexes for oxidation of styrene to benzaldehyde by tert-butylhydroxyperoxide: an experimental and theoretical approach

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

New copper hydrazone complexes [CuL1(OAc)](OAc), and [CuL2(OAc)], (L1and HL2 = Schiff base of benzhydrazide with 2-pyridine and 2-hydroxy 3-methoxy benzaldehyde, respectively) were synthesized. The heterogeneous nanocatalysts were obtained through immobilization of homogenous catalyst on magnetic nanoparticles (Fe3O4@SiO2@CPTMS). Characterization of heterogeneous nanocatalysts was performed by different techniques including FTIR, XRD and SEM. The catalytic behavior of homogenous and heterogeneous nanocatalysts were evaluated for oxidation of olefins. Comparing the catalytic behavior of homogenous and heterogeneous confirm that heterogeneous catalysts were more efficient than homogenous catalysts. Based on results, the function of Fe3O4@SiO2@CPTMS/[CuL1(OAc)](OAc) and Fe3O4@SiO2@CPTMS/[CuL2(OAc)] was notable for oxidation of styrene with 98%, 93% conversion and 81%, 68% selectivity towards benzaldehyde, respectively. By coupling Fe3O4 with hydrazone complexes not only can separate the catalysts from reaction medium easily, but also achieve to higher recyclability (up to four cycles). Moreover, to further assist the experimental studies, a comprehensive theoretical calculations are also performed by using density functional theory (DFT) calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are available on request.

References

  1. Plass W (2003) Supramolecular interactions of vanadate species: vanadium(V) complexes with N-salicylidenehydrazides as versatile models. Coord Chem Rev 237:205–212. https://doi.org/10.1016/S0010-8545(02)00228-x

    Article  CAS  Google Scholar 

  2. Nica S, Pohlmann A, Plass W (2005) Vanadium(V) oxoperoxo complexes with side chain substituted N-salicylidenehydrazides: modeling supramolecular interactions in vanadium haloperoxidases. Eur J Inorg Chem 5:2032–2036. https://doi.org/10.1002/ejic.200401060

    Article  CAS  Google Scholar 

  3. Plass W, Pohlmann A, Yozgatli H (2000) Short communication N-salicylidenehydrazides as versatile tridentate ligands for dioxovanadium(V) complexes. J Inorg Biochem 80:181–183. https://doi.org/10.1016/s0162-0134(00)00029-5

    Article  CAS  PubMed  Google Scholar 

  4. Yunpeng JD, Wei Ch, Fu X (2016) Synthesis and biological evaluation of heterocyclic hydrazone transition metal complexes as potential anticancer agents Yunpeng. RSC Adv 6:109718–197725. https://doi.org/10.1039/C6RA23477A

    Article  CAS  Google Scholar 

  5. Hu S, Song J, Zhao F, Meng X (2015) Highly sensitive and selective colorimetric naked-eye detection of Cu2+ in aqueous medium using a hydrazone chemosensor. Sens Actuators B 215:241–248. https://doi.org/10.1016/j.snb.2015.03.059

    Article  CAS  Google Scholar 

  6. Ward MD (2005) Near-infrared electrochromic materials for optical attenuation based on transition-metal coordination complexes. J Solid State Electrochem 9:778–787. https://doi.org/10.1007/s10008-005-0668-4

    Article  CAS  Google Scholar 

  7. Anwar MU, Shuvaev KV, Dawe LN, Thompson LK (2011) Polynuclear Fen complexes (n = 1, 2, 4, 5) of polytopic hydrazone ligands with Fe(II), Fe(III) and mixed oxidation state combinations polynuclear Fe. Inorg Chem 50(23):12141–12154. https://doi.org/10.1021/ic201891h

    Article  CAS  PubMed  Google Scholar 

  8. Ghorbanloo M, Bikas R, Jafari S, Krawczyk MS (2018) Synthesis, structural characterization and catalytic potential of oxidovanadium(IV) and dioxidovanadium(V) complexes with thiazole-derived NNN-donor ligand. J Coord Chem 8972:1–16. https://doi.org/10.1080/00958972.2018.1465941

    Article  CAS  Google Scholar 

  9. Hosseini-monfared H, Bikas R, Mahboubi-anarjan P, Blake AJ, Lippolis V, Arslan NB, Kazak C (2014) Oxidovanadium(V) complexes containing hydrazone based O, N, O-donor ligands: synthesis, structure, catalytic properties and theoretical calculations. Polyhedron 69:90–102. https://doi.org/10.1016/j.poly.2013.11.020

    Article  CAS  Google Scholar 

  10. Kumari S, Das B, Ray S (2019) An insight into the catalytic activity of palladium Schiff-base complexes towards the Heck coupling. Dalton Trans 4:15942–15954. https://doi.org/10.1039/c9dt03341f

    Article  CAS  Google Scholar 

  11. Naeimi H, Moradian M (2008) Alumina-supported metal(II) Schiff base complexes as heterogeneous catalysts in the high-regioselective cleavage of epoxides to halohydrins by using elemental halogen. Polyhedron 27:3639–3645. https://doi.org/10.1016/j.poly.2008.08.015

    Article  CAS  Google Scholar 

  12. Gupta KC, Kumar A, Lin C (2009) Polymer-supported Schiff base complexes in oxidation reactions. Coord Chem Rev 253:1926–1946. https://doi.org/10.1016/j.ccr.2009.03.019

    Article  CAS  Google Scholar 

  13. Gawande MB, Rathi AK, Nogueira ID, Varma RS, Branco PS (2013) Green chemistry. Green Chem 15:1895–1899. https://doi.org/10.1039/c3gc40457a

    Article  CAS  Google Scholar 

  14. Masteri-farahani M, Adegozali S, Matin A (2015) Hybrid organometallic-inorganic nanomaterial: acetyl ferrocene Schiff base immobilized on silica coated magnetite nanoparticles abstract. J Nanostruct 5:337–344. https://doi.org/10.7508/JNS.2015.04.003

    Article  Google Scholar 

  15. Xinzhe Li RL, Fang Y, Hu Y, Huo H, Zhao SH, Long X, Ma J (2015) Mesoporous titanium dioxide coating on gold modified silica nanotubes: a tube-in-tube titanium nanostructure for visible-light photocatalysts. RSC Adv 5:62962–62969. https://doi.org/10.1039/C5RA11934K

    Article  CAS  Google Scholar 

  16. Gawande MB, Monga Y, Zboril R, Sharma RK (2015) Silica-decorated magnetic nanocomposites for catalytic applications. Coord Chem Rev 288:118–143. https://doi.org/10.1016/j.ccr.2015.01.001

    Article  CAS  Google Scholar 

  17. Ghorbani-choghamarani A, Darvishnejad Z, Tahmasbi B (2015) Schiff base complexes of Ni Co, Cr, Cd and Zn supported on magnetic. Inorg Chim Acta 435:223–231. https://doi.org/10.1016/j.ica.2015.07.004

    Article  CAS  Google Scholar 

  18. Eftekhari-sis B, Akbari M, Amini M, Ashouri F (2016) Oxoperoxo tungsten(VI) complex immobilized on Schiff base-modified Fe3O4 magnetic nanoparticles as a heterogeneous catalyst for oxidation of alcohols with hydrogen peroxide. J Coord Chem 8972:1–10. https://doi.org/10.1080/00958972.2016.1251588

    Article  CAS  Google Scholar 

  19. Rayati S, Khodaei E, Jafarian M, Wojtczak A (2017) Mn-Schiff base complex supported on magnetic nanoparticles: synthesis, crystal structure, electrochemical properties and catalytic activities for oxidation of olefins and sulfides. Polyhedron 133:327–335. https://doi.org/10.1016/j.poly.2017.05.049

    Article  CAS  Google Scholar 

  20. Tavakoli M, Samira H, Mehdi S, Ardakani H, Pakdin Z (2018) A manganese Schiff base complex immobilized on copper–ferrite magnetic nanoparticles as an efficient and recyclable nanocatalyst for selective oxidation of alcohols. Transit Met Chem 43:579–589. https://doi.org/10.1007/s11243-018-0244-2

    Article  CAS  Google Scholar 

  21. Veisi H, Rashtiani A, Rostami A, Shirinbayan M, Hemmati S (2019) Chemo-selective oxidation of sulfide to sulfoxides with H2O2 catalyzed by oxo-vanadium/Schiff-base complex immobilized on modified magnetic Fe3O4 nanoparticles as a heterogeneous and recyclable nanocatalyst. Polyhedron 157:358–366. https://doi.org/10.1016/j.poly.2018.09.034

    Article  CAS  Google Scholar 

  22. Maleki A, Taheri-ledari R, Ghalavand R, Firouzi-haji R (2020) Palladium-decorated o-phenylenediamine-functionalized Fe3O4/SiO2 magnetic nanoparticles: a promising solid-state catalytic system used for Suzuki–Miyaura coupling reactions. J Phys Chem Solids 136:109200. https://doi.org/10.1016/j.jpcs.2019.109200

    Article  CAS  Google Scholar 

  23. Al-Qahtani SD, Alsoliemy A, Almehmadi SJ, Alkhamis KH, Alrefaei AF, Zaky R, El-Metwaly N (2021) Green synthesis for new Co(II), Ni(II), Cu(II) and Cd(II) hydrazone-based complexes; characterization, biological activity and electrical conductance of nano-sized copper sulphate. J Mol Struct 1244:131238–131250. https://doi.org/10.1016/j.molstruc.2021.131238

    Article  CAS  Google Scholar 

  24. Adam MSS, Khalil A (2022) Nickel(II), copper(II), and vanadyl(II) complexes with tridentate nicotinoyl hydrazone derivative functionalized as effective catalysts for epoxidation processes and as biological reagents. J Taiwan Inst Chem Eng 132:104192–104202. https://doi.org/10.1016/j.jtice.2021.104192

    Article  CAS  Google Scholar 

  25. Thompson KH, Orvig C (2003) Boon and bane of metal ions in medicine. Science 300:936–939. https://doi.org/10.1126/science.1083004

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Ma Z, Xing J, Liu H (2004) Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6. https://doi.org/10.1016/j.jmmm.2003.07.006

    Article  CAS  Google Scholar 

  27. Fe N (2014) Nano Fe3O4 supported biimidazole Cu(I) complex. RSC Adv 4:23116–23124. https://doi.org/10.1039/c4ra03333g

    Article  CAS  Google Scholar 

  28. Mirzazadeh H, Lashanizadegan M (2018) Improving the catalytic activity of magnetic Fe3O4/ZnO–CdO/reduced graphene oxide for ultrasonic degradation of the organic pollutants and the green oxidation of olefins. Solid State Sci 79:48–57. https://doi.org/10.1016/j.solidstatesciences.2018.03.010

    Article  CAS  Google Scholar 

  29. Lashanizadegan M, Mirzazadeh H, Esfandiari Z (2019) Evaluation performance of Fe–Mn–Ce–O mixed metal oxides and Fe–Mn–Ce–O/montmorillonite for adsorption of azo dyes in aqueous solution and oxidation reaction. Mater Res Express 6:125028–125044. https://doi.org/10.1088/2053-1591/ab5550

    Article  CAS  Google Scholar 

  30. Lashanizadegan M, Anafcheh M, Mirzazadeh H, Gholipoor P (2020) Efficient Cd/Ce nanoparticles supported on reduced graphene oxide for the reduction of 4-nitrophenol and the oxidation of olefins: experimental and theoretical study. Mater Res Bull 125:110773–110784. https://doi.org/10.1016/j.materresbull.2020.110773

    Article  CAS  Google Scholar 

  31. Lashanizadegan M, Nikoofar K, Aghaei A, Mehrikaram F, Mirzazadeh H (2019) Immobilized Cu(II) and Co(II) Schiff base complexes on the surface of functionalized magnetized multiwalled carbon nanotubes: novel catalysts for oxidation and solvent-free pseudo six-component condensation reaction. Solid State Sci 95:105937–105948. https://doi.org/10.1016/j.solidstatesciences.2019.105937

    Article  CAS  Google Scholar 

  32. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154115. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  33. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  34. Boys SF, Bernardi FD (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  35. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  36. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094. https://doi.org/10.1021/cr00031a013

    Article  CAS  Google Scholar 

  37. Ghiasi M, Gholami S (2020) Quantum mechanical study of human carbonic anhydrase II incomplex with polyamines as novel inhibitors: kinetic and thermodynamic investigation. Comput Theor Chem 1186:112911. https://doi.org/10.1016/j.comptc.2020.112911

    Article  CAS  Google Scholar 

  38. Ghiasi M, Bavafa S, Zahedi M (2021) QM study of interaction between arginine amino acid and Au clusters and the effects on arginine acidity. Gold Bull. https://doi.org/10.1007/s13404-021-00292-7

    Article  Google Scholar 

  39. Reed AE, Carpenter JE, Weinhold F, Glendening ED (1992) What is NBO analysis and how is it useful? Int Rev Phys Chem. https://doi.org/10.1080/0144235X.2016.1192262

    Article  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2009) Gaussian 09, revision A.08. Gaussian Inc, Wallingford, pp 5648–5652

    Google Scholar 

  41. Salehzadeh S, Golbedaghi R, Tidmarsh IS, Al-rasbi NK, Adams H, Ward MD (2008) Cd(II) and Mn(II) complexes of a new hexadentate Schiff base ligand derived from an asymmetric tripodal tetraamine and 2-pyridinecarboxaldehyde. Polyhedron 27:3549–3556. https://doi.org/10.1016/j.poly.2008.08.019

    Article  CAS  Google Scholar 

  42. Abd-elzaher MM (2001) Spectroscopic characterization of some tetradentate Schiff bases and their complexes with nickel, copper and zinc. J Chin Chem Soc Chem Soc 48:153–158. https://doi.org/10.1002/jccs.200100027

    Article  CAS  Google Scholar 

  43. Yeap G, Ha S, Ishizawa N, Suda K (2003) Synthesis, crystal structure and spectroscopic study of para substituted 2-hydroxy-3-methoxybenzalideneanilines. J Mol Struct 658:87–99. https://doi.org/10.1016/S0022-2860(03)00453-8

    Article  CAS  Google Scholar 

  44. Hayvali Z, Dal H (2011) Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes. J Mol Struct 997:53–59. https://doi.org/10.1016/j.molstruc.2011.04.037

    Article  CAS  Google Scholar 

  45. Cancino HGP, Vega A, Santiago-Portillo A, Navalon S, Alvaro M, Aguirre P, Spodine E (2016) Novel copper(II)–lanthanum(III) metal organic framework as selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catal Sci Technol 6:3727–3736. https://doi.org/10.1039/C5CY01448D

    Article  CAS  Google Scholar 

  46. Farzaneh F, Taghavi J, Malakooti R, Ghandi M (2006) Immobilized vitamin B12 within nanoreactors of MCM-41 as selective catalyst for oxidation of organic substrates. J Mol Catal A 244:252–257. https://doi.org/10.1016/j.molcata.2005.08.058

    Article  CAS  Google Scholar 

  47. Slaughter LM, Collman JP, Eberspacher TA et al (2004) Radical autoxidation and autogenous O2 evolution in manganese−porphyrin catalyzed alkane oxidations with chlorite. Inorg Chem 43:6641–6647. https://doi.org/10.1021/ic049922j

    Article  CAS  Google Scholar 

  48. Neuenschwander U, Hermans I (2011) The conformations of cyclooctene: consequences for epoxidation chemistry. J Org Chem 76:10236–10240. https://doi.org/10.1021/jo202176j

    Article  CAS  PubMed  Google Scholar 

  49. Islam SM, Mondal P, Mukherjee S (2011) A reusable polymer anchored copper(II) complex catalyst for the efficient oxidation of olefins and aromatic alcohol. Polym Adv Technol 22:933–941. https://doi.org/10.1002/pat.1598

    Article  CAS  Google Scholar 

  50. Zhu X, Shen R, Zhang L (2014) Catalytic oxidation of styrene to benzaldehyde over a copper Schiff-base/SBA-15 catalyst. Chin J Catal 35:1716–1726. https://doi.org/10.1016/S1872-2067(14)60131-5

    Article  CAS  Google Scholar 

  51. Yang Y, Zhang Y, Hao S, Kan Q (2011) Tethering of Cu(II), Co(II) and Fe(III) tetrahydro-salen and salen complexes onto amino-functionalized SBA-15: effects of salen ligand hydrogenation on catalytic performances for aerobic epoxidation of styrene. Chem Eng J 171:1356–1366. https://doi.org/10.1016/j.cej.2011.05.047

    Article  CAS  Google Scholar 

  52. Anand N, Hari K, Reddy P, Swapna V, Seetha K, Rao R, Burri DR (2011) Fe(III) complex anchored SBA-15 is a new heterogeneous catalyst for the cleavage of aliphatic C@C bond of styrene and its derivatives. Microporous Mesoporous Mater 143:132–140. https://doi.org/10.1016/j.micromeso.2011.02.017

    Article  CAS  Google Scholar 

  53. Mohan N, Suresh CH (2014) A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds. J Phys Chem A 118:1697–1705. https://doi.org/10.1021/jp4115699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the research council of Alzahra University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Lashanizadegan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 146 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashanizadegan, M., Habibi, N., Mirzazadeh, H. et al. Immobilized magnetic copper hydrazone complexes for oxidation of styrene to benzaldehyde by tert-butylhydroxyperoxide: an experimental and theoretical approach. Reac Kinet Mech Cat 135, 3223–3242 (2022). https://doi.org/10.1007/s11144-022-02304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02304-9

Keywords

Navigation