Skip to main content
Log in

Preparation and performance of monolithic Pd-based catalyst for simultaneous removal of NOx and particulate matter

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Dealing with nitric oxides (NOx) and particulate matter (PM) from diesel exhausted gas, four kinds of catalysts were prepared by introducing rare earth/transition metal oxides and precious metal to the support Al2O3 in this work. The physical and chemical properties of the catalysts were analyzed. The effects of different active components on the structure and activity of the catalysts were discussed. From the simultaneous catalytic removal of NOx and PM results, CuMnCe/Al2O3 exhibited the highest NOx reduction activity. However, after Pd loading, with the maintaining of the reduction activity, the catalyst presented enhanced PM oxidation activity. Besides that, PdCuMnCe/Al2O3 showed excellent cyclic performance. The monolithic Pd-based catalyst was prepared using cordierite as support. Even though there is a slight decrease in catalytic performance compared with PdCuMnCe/Al2O3, the monolithic catalyst presented high removal efficiency of NOx.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anenberg SC, Miller J, Minjares R et al (2017) Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545(7655):467–471. https://doi.org/10.1038/nature22086

    Article  CAS  PubMed  Google Scholar 

  2. Wang YF, Huang KL, Li CT et al (2003) Emissions of fuel metals content from a diesel vehicle engine. Atmos Environ 37(33):4637–4643. https://doi.org/10.1016/j.atmosenv.2003.07.007

    Article  CAS  Google Scholar 

  3. Reşitoğlu İA, Altinişik K, Keskin A (2014) The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol Environ Policy 17(1):15–27. https://doi.org/10.1007/s10098-014-0793-9

    Article  CAS  Google Scholar 

  4. Zhang ZH, Cheung CS, Chan TL et al (2009) Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst. Sci Total Environ 407(15):4497–4505. https://doi.org/10.1016/j.scitotenv.2009.04.036

    Article  CAS  PubMed  Google Scholar 

  5. Feng X, Ge Y, Ma C et al (2014) Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Sci Total Environ 472:56–62. https://doi.org/10.1016/j.scitotenv.2013.11.041

    Article  CAS  PubMed  Google Scholar 

  6. Biswas S, Verma V, Schauer JJ et al (2009) Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits. Atmos Environ 43(11):1917–1925. https://doi.org/10.1016/j.atmosenv.2008.12.040

    Article  CAS  Google Scholar 

  7. Cauda E, Fino D, Saracco G et al (2007) Preparation and regeneration of a catalytic diesel particulate filter. Chem Eng Sci 62(18–20):5182–5185. https://doi.org/10.1016/j.ces.2006.12.048

    Article  CAS  Google Scholar 

  8. Mokhri MA, Abdullah NR, Abdullah SA et al (2012) Soot filtration recent simulation analysis in diesel particulate filter (DPF). Procedia Eng 41:1750–1755. https://doi.org/10.1016/j.proeng.2012.07.378

    Article  CAS  Google Scholar 

  9. Zou ZQ, Meng M, Tsubaki N et al (2009) Influence of Co or Ce addition on the NOx storage and sulfur-resistance performance of the lean-burn NOx trap catalyst Pt/K/TiO2-ZrO2. J Hazard Mater 170(1):118–126. https://doi.org/10.1016/j.jhazmat.2009.04.125

    Article  CAS  PubMed  Google Scholar 

  10. Qi GS, Yang RT, Chang R (2004) MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B 51(2):93–106. https://doi.org/10.1016/j.apcatb.2004.01.023

    Article  CAS  Google Scholar 

  11. Gb A, Ll B, Gr A et al (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B 18(1–2):1–36. https://doi.org/10.1016/S0926-3373(98)00040-X

    Article  Google Scholar 

  12. Liu Z, Ihl Woo S (2006) Recent advances in catalytic DeNOx science and technology. Catal Rev 48(1):43–89. https://doi.org/10.1080/01614940500439891

    Article  CAS  Google Scholar 

  13. Zhang ST, Pang L, Chen Z et al (2020) Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNOx in diesel exhaust: current status, challenges, and future perspectives. Appl Catal A 607:117855. https://doi.org/10.1016/j.apcata.2020.117855

    Article  CAS  Google Scholar 

  14. Yoshida K, Makino S, Sumiya S et al (1989) Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust. SAE Trans. https://doi.org/10.4271/892046

    Article  Google Scholar 

  15. Kang W, Choi B, Jung S et al (2018) PM and NOx reduction characteristics of LNT/DPF plus SCR/DPF hybrid system. Energy 143:439–447. https://doi.org/10.1016/j.energy.2017.10.133

    Article  CAS  Google Scholar 

  16. Cheng Y, Liu J, Zhao Z et al (2018) A new 3DOM Ce-Fe-Ti material for simultaneously catalytic removal of PM and NOx from diesel engines. J Hazard Mater 342:317–325. https://doi.org/10.1016/j.jhazmat.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Zhang C, Shu X et al (2019) The mechanism of Pd, K co-doping on Mg–Al hydrotalcite for simultaneous removal of diesel soot and NOx in SO2-containing atmosphere. Fuel 240:244–251. https://doi.org/10.1016/j.fuel.2018.11.128

    Article  CAS  Google Scholar 

  18. Matsuoka K, Orikasa H, Itoh Y et al (2000) Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen. Appl Catal B 26(2):89–99. https://doi.org/10.1016/S0926-3373(00)00111-9

    Article  CAS  Google Scholar 

  19. Maffei N, Nossova L, Turnbull MJ et al (2020) Doped barium cerate perovskite catalysts for simultaneous NOx storage and soot oxidation. Appl Catal A 600:117465. https://doi.org/10.1016/j.apcata.2020.117465

    Article  CAS  Google Scholar 

  20. Dhal GC, Dey S, Mohan D et al (2017) Study of Fe Co, and Mn-based perovskite-type catalysts for the simultaneous control of soot and NOx from diesel engine exhaust. Mater Discov 10:37–42. https://doi.org/10.1016/j.md.2018.04.002

    Article  Google Scholar 

  21. Li Q, Meng M, Dai F et al (2012) Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot–NOx removal. Chem Eng J 184:106–112. https://doi.org/10.1016/j.cej.2012.01.009

    Article  CAS  Google Scholar 

  22. Zhu RS, Yan QY, He JS et al (2017) Simultaneous removal of soot and NOx with Ru-Ir/TiO2 catalyst under oxygen-rich condition. Appl Catal A 541:42–49. https://doi.org/10.1016/j.apcata.2017.04.014

    Article  CAS  Google Scholar 

  23. Mohan S, Dinesha P, Kumar S (2020) NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: a review. Chem Eng J 384:123253. https://doi.org/10.1016/j.cej.2019.123253

    Article  CAS  Google Scholar 

  24. Liu F, Chen LY, Neathery JK et al (2014) Cerium oxide promoted iron-based oxygen carrier for chemical looping combustion. Ind Eng Chem Res 53(42):16341–16348. https://doi.org/10.1021/ie503160b

    Article  CAS  Google Scholar 

  25. Huynh M, Shi C, Billinge SJ et al (2015) Nature of activated manganese oxide for oxygen evolution. J Am Chem Soc 137(47):14887–14904. https://doi.org/10.1021/jacs.5b06382

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Zhu J, Li J et al (2014) Novel Mn–Ce–Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl Mater Interfaces 6(16):14500–14508. https://doi.org/10.1021/am5038164

    Article  CAS  PubMed  Google Scholar 

  27. Peng B, Feng C, Liu S et al (2018) Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process. Catal Today 314:122–128. https://doi.org/10.1016/j.cattod.2017.10.044

    Article  CAS  Google Scholar 

  28. Zhang X, Zhang X, Song L et al (2018) Enhanced catalytic performance for CO oxidation and preferential CO oxidation over CuO/CeO2 catalysts synthesized from metal organic framework: Effects of preparation methods. Int J Hydrogen Energy 43(39):18279–18288. https://doi.org/10.1016/j.ijhydene.2018.08.060

    Article  CAS  Google Scholar 

  29. Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113(6):3949–3985. https://doi.org/10.1021/cr3004949

    Article  CAS  PubMed  Google Scholar 

  30. Yao Z, Qu D, Guo Y et al (2019) Fabrication and characteristics of Mn@Cu3(BTC)2 for low-temperature catalytic reduction of NOx with NH3. Adv Mater Sci Eng 2019:2935942. https://doi.org/10.1155/2019/2935942

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the environmental protection research project in Jiangsu Province (No. 2019004) and the Jiangsu Transportation Science and Technology Project (No. 2020Y10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1320 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Wang, X., Yin, C. et al. Preparation and performance of monolithic Pd-based catalyst for simultaneous removal of NOx and particulate matter. Reac Kinet Mech Cat 135, 3031–3044 (2022). https://doi.org/10.1007/s11144-022-02303-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02303-w

Keywords

Navigation