Skip to main content
Log in

Catalytic behavior of gold nanoparticles supported on a Fe–TiO2 oxide for the photodegradation of malachite green and tannic acid

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The aim of this study is the application of heterogeneous catalysts based on gold and iron in the photodegradation of organic pollutants. We have chosen two molecules with different structures and properties: malachite green and tannic acid. The Au/TiO2 photocatalyst is prepared by deposition precipitation using NaOH (DP) while the Au/Fe–TiO2 catalyst is prepared by impregnation with iron followed by deposition of Au. The obtained catalysts are characterized using: high-resolution transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, N2 adsorption–desorption, X-ray diffraction, and UV–Visible in reflection diffuse (RD/UV–Vis). The photodegardation of organic pollutants is carried out by applying three types of irradiations: UVA, UVB and UVC. The results obtained show that the nature of the catalyst and the irradiations play a dominant role in the degradation and mineralization results. The theoretical calculations are carried out in order to explain the difference between the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai C, Zhang Z, Liu J, Shan N, Zhang H, Dionysiou DD (2016) Appl Catal B 182:456–468

    Article  CAS  Google Scholar 

  2. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2002) Appl Catal B 39:75–90

    Article  CAS  Google Scholar 

  3. Chong MN, Jin B, Chow CWK, Saint C (2010) Water Res 44:2997–3027

    Article  CAS  PubMed  Google Scholar 

  4. Stylidi M, Kondarides DI, Verykios XE (2003) Appl Catal B 40:271–286

    Article  CAS  Google Scholar 

  5. Akpan UG, Hameed BH (2009) J Hazard Mater 170:520–529

    Article  CAS  PubMed  Google Scholar 

  6. Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2009) Water Air Soil Pollut 205:187

    Article  Google Scholar 

  7. Hernández R, Durón-Torres SM, Esquivel K, Guzmán C (2017). In: Pérez Campos R, Contreras Cuevas A, Esparza Muñoz RA (eds) Characterization of metals and alloys. Springer, Cham

    Google Scholar 

  8. Macwan DP, Dave PN, Chaturvedi S (2011) J Mater Sci 46:3669–3686

    Article  CAS  Google Scholar 

  9. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  CAS  PubMed  Google Scholar 

  10. Liŭ D, Li Z, Wang W, Wang G, Liú D (2016) J Alloy Compd 654:491–497

    Article  Google Scholar 

  11. Lei XF, Xue XX, Yang H (2014) Appl Surf Sci 321:396–403

    Article  CAS  Google Scholar 

  12. Liu L, Gao F, Zhao H, Li Y (2013) Appl Catal B 134–135:349–358

    Article  Google Scholar 

  13. Hidalgo MC, Aguilar M, Maicu M, Navío JA, Colón G (2007) Catal Today 129:50–58

    Article  CAS  Google Scholar 

  14. Rosseler O, Shankar MV, Du MK-L, Schmidlin L, Keller N, Keller V (2010) J Catal 269:179–190

    Article  CAS  Google Scholar 

  15. Maicu M, Hidalgo MC, Colón G, Navío JA (2011) J Photochem Photobiol A 217:275–283

    Article  CAS  Google Scholar 

  16. Ide Y, Matsuoka M, Ogawa M (2010) J Am Chem Soc 132:16762–16764

    Article  CAS  PubMed  Google Scholar 

  17. Chaker H, Chérif-Aouali L, Khaoulani S, Bengueddach A, Fourmentin S (2016) J Photochem Photobiol A 318:142–149

    Article  CAS  Google Scholar 

  18. Tiwari A, Mondal I, Ghosh S, Chattopadhyay N, Pal U (2016) Phys Chem Chem Phys 18:15260–15268

    Article  CAS  PubMed  Google Scholar 

  19. Likodimos V, Chrysi A, Calamiotou M, Fernández-Rodríguez C, Doña-Rodríguez JM, Dionysiou DD, Falaras P (2016) Appl Catal B 192:242–252

    Article  CAS  Google Scholar 

  20. Oros-Ruiz S, Gómez R, López R, Hernández-Gordillo A, Pedraza-Avella JA, Moctezuma E, Pérez E (2012) Catal Commun 21:72–76

    Article  CAS  Google Scholar 

  21. Georgiev P, Kaneva N, Bojinova A, Papazova K, Mircheva K, Balashev K (2014) Colloids Surf A 460:240–247

    Article  CAS  Google Scholar 

  22. Weng Y, Li J, Ding X, Wang B, Dai S, Zhou Y, Pang R, Zhao Y, Xu H, Tian B (2020) Int J Nanomed 15:1823

    Article  CAS  Google Scholar 

  23. Aliyan H, Fazaeli R, Jalilian R (2013) Appl Surf Sci 276:147–153

    Article  CAS  Google Scholar 

  24. Asiltürk M, Sayılkan F, Arpaç E (2009) J Photochem Photobiol A 203:64–71

    Article  Google Scholar 

  25. Huang S, Hu B, Zhao S, Zhang S, Wang M, Jia Q, He L, Zhang Z, Du M (2022) Chem Eng J 430:132933

    Article  CAS  Google Scholar 

  26. de SantiagoColín DM, Martínez-Chávez LA, Cuán Á, Elizalde-Peña EA, Rivera JA, Guzmán C, Escobar-Alarcón L, Esquivel K (2018) J Photochem Photobiol A Chem 364:250–261

    Article  Google Scholar 

  27. Murugan E, Nimita Jebaranjitham J, Janaki Raman K, Mandal A, Geethalakshmi D, Dharmendira Kumar M, Saravanakumar A (2017) N J Chem 41:10860–10871

    Article  CAS  Google Scholar 

  28. Bouayed M-A, Ameur N, Taieb-Brahimi F, Hidouri T, Naser S, Ghouas H, Bedrane S, Al-Shahri BM, Bachir R (2021) Reac Kinet Mech Cat 134:517–537

    Article  CAS  Google Scholar 

  29. Frisch M, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01, Gaussian, Inc., Wallingford CT

  30. Zhao Y, Truhlar DG (2008) J Phys Chem A 112:1095–1099

    Article  CAS  PubMed  Google Scholar 

  31. Nasr S (2022) Reac Kinet Mech Cat

  32. Rajendran R, Vignesh S, Raj V, Palanivel B, Ali AM, Sayed MA, Shkir M (2022) J Alloy Compd 894:162498

    Article  CAS  Google Scholar 

  33. Ferouani G, Ameur N, Bachir R (2020) Res Chem Intermed 46:1373–1387

    Article  CAS  Google Scholar 

  34. Hakkoum A, Ameur N, Bachir R, Bedrane S, Choukchou-Braham A (2019) Ann. Chim.-Sci. Matériaux 43:299–304

    Article  Google Scholar 

  35. Ameur N, Berrichi A, Bedrane S, Bachir R (2014) Adv Mater Res 856:48–52

    Article  CAS  Google Scholar 

  36. Abbas N, Shao GN, Haider MS, Imran SM, Park SS, Kim HT (2016) J Ind Eng Chem 39:112–120

    Article  CAS  Google Scholar 

  37. Hung W-H, Chien T-M, Tseng C-M (2014) J Phys Chem C 118:12676–12681

    Article  CAS  Google Scholar 

  38. Hung W-H, Chien T-M, Lo A-Y, Tseng C-M, Li D (2014) RSC Adv 4:45710–45714

    Article  CAS  Google Scholar 

  39. Mahadik MA, Shinde SS, Mohite VS, Kumbhar SS, Moholkar AV, Rajpure KY, Ganesan V, Nayak J, Barman SR, Bhosale CH (2014) J Photochem Photobiol B 133:90–98

    Article  CAS  PubMed  Google Scholar 

  40. Ameur N, Brahimi FT, Bensaada N, Gouhas H, Ferouani G (2020) ChemistrySelect 5:13550–13558

    Article  CAS  Google Scholar 

  41. Chaker H, Ameur N, Saidi-Bendahou K, Djennas M, Fourmentin S (2021) J Environ Chem Eng 9:104584

    Article  CAS  Google Scholar 

  42. Chaker H, Fourmentin S, Chérif-Aouali L (2020) ChemistrySelect 5:11787–11796

    Article  CAS  Google Scholar 

  43. Khaoulani S, Chaker H, Cadet C, Bychkov E, Cherif L, Bengueddach A, Fourmentin S (2015) C R Chim 18:23–31

    Article  CAS  Google Scholar 

  44. Lente G (2018) Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  45. Ilunga AK, Mamba BB, Nkambule TTI (2021) Appl Organomet Chem 35:e6050

    Article  CAS  Google Scholar 

  46. Naqvi FK, Beg S, Anwar K (2020) Reac Kinet Mech Cat 131:409–422

    Article  CAS  Google Scholar 

  47. Thi VH-T, Lee B-K (2017) Mater Res Bull 96:171–182

    Article  CAS  Google Scholar 

  48. Eddy NO (2011) J Adv Res 2:35–47

    Article  Google Scholar 

  49. Eddy NO, Ita BI (2011) J Mol Model 17:359–376

    Article  CAS  PubMed  Google Scholar 

  50. Odoemelam SA, Emeh UN, Eddy NO (2018) J Taibah Univ Sci 12:255–265

    Article  Google Scholar 

  51. Obi-Egbedi NO, Obot IB, El-Khaiary MI (2011) J Mol Struct 1002:86–96

    Article  CAS  Google Scholar 

  52. Gupta NK, Verma C, Quraishi MA, Mukherjee AK (2016) J Mol Liq 215:47–57

    Article  CAS  Google Scholar 

  53. Verma C, Olasunkanmi LO, Obot IB, Ebenso EE, Quraishi MA (2016) RSC Adv 6:15639–15654

    Article  CAS  Google Scholar 

  54. Verma C, Quraishi M, Olasunkanmi L, Ebenso EE (2015) RSC Adv 5:85417–85430

    Article  CAS  Google Scholar 

  55. Olasunkanmi LO, Sebona MF, Ebenso EE (2017) J Mol Struct 1149:549–559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Larg Groups Project under Grant Number (RGP.2/213/43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Nasr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, S., Hidouri, T. Catalytic behavior of gold nanoparticles supported on a Fe–TiO2 oxide for the photodegradation of malachite green and tannic acid. Reac Kinet Mech Cat 135, 3427–3446 (2022). https://doi.org/10.1007/s11144-022-02301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02301-y

Keywords

Navigation