Skip to main content
Log in

Enhanced catalytic activity of H2O2 treated-PdO/θ-Al2O3 catalysts in methane oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Herein, the effect of H2O2 treatment on the catalytic activity of a PdO-based catalyst for methane oxidation was investigated. The H2O2-treated catalysts were prepared from as-made PdO/θ-Al2O3 (PdO/Al2O3(A-H2O2)) or calcined (PdO/Al2O3(C-H2O2)). Both H2O2-treated catalysts exhibited better catalytic activity in the absence or presence of water vapor than the PdO/θ-Al2O3 catalyst. The light-off temperatures (T50%) in the dry conditions increased in the following order: PdO/Al2O3(A-H2O2) < PdO/Al2O3(C-H2O2) < PdO/Al2O3. In the presence of water vapor, the T50% value shifted to higher temperatures compared with its value under dry conditions because of hydroxyl accumulation caused by water vapor produced during the reaction. In addition, the PdO/Al2O3(A-H2O2) catalyst exhibited the best activity for methane isothermal oxidation. This enhancement was attributed to the facile reduction of PdO species, facile desorption of adsorbed methane species, high surface exposure of PdO, and strong acid site formation caused by H2O2 treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen J, Arandiyan H, Gao X, Li J (2015) Catal Surv Asia 19:140–171

    Article  CAS  Google Scholar 

  2. Gélin P, Primet M (2002) Appl Catal B 39:1–37

    Article  Google Scholar 

  3. Liu Y, Wang S, Sun T, Gao D, Zhang C, Wang S (2012) Appl Catal B 119–120:321–328

    Article  Google Scholar 

  4. Kim CS, Hong EP, Shin C-H (2019) Catalysts 9:838–852

    Article  CAS  Google Scholar 

  5. Park J-H, Kim BH, Shin C-H, Seo G, Kim SH, Hong SB (2009) Top Catal 52:27–34

    Article  Google Scholar 

  6. He L, Fan Y, Bellettre J, Yue J, Luo L (2020) Renew Sustain Energy Rev 119:109589–109620

    Article  CAS  Google Scholar 

  7. Bashan V, Ust Y (2019) Int J Energy Res 43:7755–7789

    CAS  Google Scholar 

  8. Jiang D, Khivantsev K, Wang Y (2020) ACS Catal 10:14304–14314

    Article  CAS  Google Scholar 

  9. Park J-H, Cho JH, Kim YJ (2014) Kim ES, Han HS, Shin C-H. Appl Catal B 160–161:135–143

    Article  Google Scholar 

  10. Petrov AW, Ferri D, Krumeich F, Nachtegaal M, Bokhoven JA, Kröcher O (2018) Nat Commun 8:2545–2552

    Article  Google Scholar 

  11. Hellman A, Resta A, Martin NM, Gustafson J, Trinchero A, Carlsson P-A, Balmes O, Felici R, Rijn R, Frenken JWM, Andersen JN, Lundgren E, Grönbeck H (2012) J Phys Chem Lett 3:678–682

    Article  CAS  PubMed  Google Scholar 

  12. Xu J, Ouyang L, Mao W, Yang X-J, Xu X-C, Su J-J, Zhuang T-Z, Li H, Han Y-F (2012) ACS Catal 2:261–269

    Article  CAS  Google Scholar 

  13. Kinnunen NM, Hirvi JT, Suvanto M, Pakkanen TA (2011) Mol Catal 356:20–28

    Article  Google Scholar 

  14. Liu Y, Wang S, Gao D, Sun T, Zhang C, Wang S (2013) Fuel Process Technol 111:55–61

    Article  CAS  Google Scholar 

  15. Bychkov Y, Tulenin YP, Slinko MM, Khudorozhkov AK, Bukhtiyarov VI, Sokolov S, Korchak VN (2016) Appl Catal A 522:40–44

    Article  CAS  Google Scholar 

  16. Murata K, Mahara Y, Ohyama J, Yamamoto Y, Arai S, Satsuma A (2017) Angew Chem 129:6209–16213

    Article  Google Scholar 

  17. Cargnello M, Delgado JJ, Hernández Garrido JC, Bakhmutsky K, Montini T, Calvino Gámez JJ, Gorte RJ, Fornasiero P (2012) Science 337:713–717

    Article  CAS  PubMed  Google Scholar 

  18. Park J-H, Ahn JH, Sim H-I, Seo G, Han HS, Shin C-H (2014) Catal Commun 56:157–163

    Article  CAS  Google Scholar 

  19. Murata K, Ohyama J, Yamamoto Y, Arai S, Satsuma A (2020) ACS Catal 10:8149–8156

    Article  CAS  Google Scholar 

  20. Anfruns A, Montes-Morán M-A, Gonzalez-Olmos R, Martin MJ (2013) Chemosphere 91:48–54

    Article  CAS  PubMed  Google Scholar 

  21. Chen J-C, Huang JJ (2013) APCBEE 5:107–111

    Article  CAS  Google Scholar 

  22. Garcia-Costa AL, Casas JA (2022) Chem Eng J Adv 9:100228–100234

    Article  CAS  Google Scholar 

  23. Plauck A, Stangland EE, Dumesic JA, Mavrikakis M (2016) PNAS 1:E1973–E1982

    Google Scholar 

  24. Kim M-Y, Park SM, Park J-H, Shin C-H, Moon W-J, Sung N-E, Seo S (2011) Reac Kinet Mech Cat 103:463–479

    Article  CAS  Google Scholar 

  25. Lama K, Gao Y, Wang J, Ciucci F (2017) Electrochim Acta 244:139–145

    Article  Google Scholar 

  26. Canton P, Fagherazzi G, Battagliarin M, Menegazzo F, Pinna F, Pernicone N (2002) Langmuir 18:6530–6535

    Article  CAS  Google Scholar 

  27. Castellazzi P, Groppi G, Forzatti P, Finocchio E, Busca G (2010) J Catal 275:218–227

    Article  CAS  Google Scholar 

  28. Oemar U, Hidajat K, Kawi S (2011) Appl Catal A 402:176–187

    Article  CAS  Google Scholar 

  29. Chenakin SP, Melaet G, Szukiewicz R, Kruse N (2014) J Catal 312:1–11

    Article  CAS  Google Scholar 

  30. Thevenin PO, Alcalde A, Pettersson LJ, Järås SJ, Fierro JLG (2003) J Catal 215:78–86

    Article  CAS  Google Scholar 

  31. Kikuchi R, Maeda S, Sasaki K, Wennerström S, Eguchi K (2002) Appl Catal A 232:23–28

    Article  CAS  Google Scholar 

  32. Ciuparu D, Perkins E, Pfefferle L (2004) Appl Catal A 263:145–153

    Article  CAS  Google Scholar 

  33. Schwartz WR, Ciuparu D, Pfefferle LD (2012) J Phys Chem C116:8587–8593

    Google Scholar 

  34. Kumar RS, Hayes RE, Semagina N (2021) Catal Today 82:82–95

    Article  Google Scholar 

  35. Lin J, Zhao L, Zheng Y, Xiao Y, Yu G, Zheng Y, Chen W, Jiang L (2020) ACS Appl Mater Interfaces 12:56095–56107

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida H, Nakajima E, Yazawa Y, Hattori T (2007) Appl Catal B 71:70–79

    Article  CAS  Google Scholar 

  37. Dai Q, Zhu Q, Lou Y, Wang X (2018) J Catal 357:29–40

    Article  Google Scholar 

  38. Yang J, Hu S, Hoang S, Yang W, Fang W, Liang Z, Pan C, Zhu Y, Li L, Wu J, Hu J, Guo Y (2021) Environ Sci Technol 55:9243–9254

    Article  CAS  PubMed  Google Scholar 

  39. M’Ramadj O, Li D, Wang X, Zhang B, Lu G (2007) Catal Commun 8:880–884

    Article  Google Scholar 

  40. Dai Q-L, Yan B, Liang Y, Xu B-Q (2017) Catal Today 295:110–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hyun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 526 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH. Enhanced catalytic activity of H2O2 treated-PdO/θ-Al2O3 catalysts in methane oxidation. Reac Kinet Mech Cat 135, 2945–2958 (2022). https://doi.org/10.1007/s11144-022-02296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02296-6

Keywords

Navigation