Skip to main content
Log in

Application of machine learning to predict the yield of alginate lyase solid-state fermentation by Cunninghamella echinulata: artificial neural networks and support vector machine

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work was aimed at applying machine learning techniques to predict Semi-Solid Fermentation (SSF) yield using Cunninghamella echinulata fungus for alginate lyase production using Sargassum macroalgae genus as substrate. Approximately 115 experimental data were obtained as a result of the variation of the following factors: tc (cultivation time) (1–7 days), Ci (inoculum concentration) (2.106–1.107 spore/gbiomass), pHNutri (nutrient solution pH) (2.5–8.5), uw/w (moisture content) (65–85% w/w) and %inducer (sodium alginate concentration) (0–33.33% w/w), which were the input variables and alginate lyase enzyme concentration (U mL−1) as the output variable. The programming language employed was Python, through its SciPylibrary. The non-linear relationship between fermentation, the factors and objectives were determined using the learning capacity of Artificial Neural Networks (ANN) and the Support Vector Machine (SVM), through the correlation coefficient (R2). For ANN, with 15 neurons and using the logistic activation function, a R2 = 0.877 was obtained. SVM, with a polynomial kernel function obtained R2 = 0.821. In both models, the variables with influence were tc, uw/w, %inducer and pHNutri. Ci did not have any significant influence in the range studied. In both methods, the R2 found was considered satisfactory contributing to the optimization of the alginate lyase production using Cunninghamella echinulata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guiry MD (2014) AlgaeBase. World-wide eletronic publication. National University of Ireland, Galway. http://www.algaebase.org. Accessed 8 Sept 2021

  2. Torres MR, Sousa APA, Silva Filho EAT et al (2007) Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohydr Res 342(14):2067–2074. https://doi.org/10.1016/j.carres.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  3. Karina T (2017) Estudo decifra mistério das algas que invadiram o Brasil. https://exame.com/ciencia/estudo-decifra-misterio-das-algas-que-invadiram-o-brasil/#:~:text=Embora%20as%20algas%20do%20g%C3%AAnero,o%20banho%20de%20mar%20invi%C3%A1vel. Accessed 07 Sept 2021

  4. Trinanes J, Putman NF, Goni G et al (2021) Monitoring pelagic Sargassum inundation potential for coastal communities. J Oper Oceanogr 1:1–12. https://doi.org/10.1080/1755876X.2021.1902682

    Article  Google Scholar 

  5. Bonilla-Loaiza AM, Rodríguez-Jasso RM, Belmares R et al (2022) Fungal Proteins from Sargassum spp. using solid-state fermentation as a green bioprocess strategy. Molecules 27(12):3887. https://doi.org/10.3390/molecules27123887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chavez-Gonzalez ML, Balagurusamy N, Aguilar CN (2019) Advances in Food Bioproducts and Bioprocessing Technologies. CRC Press, Boca Raton

    Book  Google Scholar 

  7. Mohapatra BR (2020) Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10. Biocatal Agric Biotechnol 23:101458. https://doi.org/10.1016/j.bcab.2019.101458

    Article  Google Scholar 

  8. Siller-Sánchez A, Ruiz HA, Aguilar CN et al (2019) Green bio-processes. In: Parameswaran B, Varjani S, Raveendran S (eds) Biorefinery approach for red seaweeds biomass as source for enzymes production: food and biofuels industry. Springer, Singapore, pp 413–446

    Google Scholar 

  9. Lara A, Rodríguez-Jasso RM, Loredo-Treviño A et al (2020) Enzymes in the third generation biorefinery for macroalgae biomass. Elsevier, Amsterdam

    Book  Google Scholar 

  10. Sivakumar T, Sathya C, Shankar T et al (2015) Screening and optimization of alginate lyase producing Bacillus sp. from seaweed. ANJAC J Sci 14:42–429

    Google Scholar 

  11. Beltagy EA, El Borai A, Lewiz M et al (2016) Purifcation and characterization of alginate lyase from locally isolated marine Pseudomonas stutzeri MSEA04. Acta Biol Hung 67(3):305–317. https://doi.org/10.1556/018.67.2016.3.8

    Article  CAS  PubMed  Google Scholar 

  12. Li S, Wang L, Hao J et al (2017) Purification and characterization of a new alginate lyase from marine bacterium Vibrio sp. SY08. Mar Drugs 15(1):1. https://doi.org/10.3390/md15010001

    Article  CAS  Google Scholar 

  13. Shankar T, Sivakumar T, Satya C et al (2016) Purification, characterization and immobilization of alginate lyase produced by Bacillus sp. associated with Sargassum wightii. Univers J Microbiol Res 4(1):11–22. https://doi.org/10.13189/ujmr.2016.040103

    Article  CAS  Google Scholar 

  14. Zhu Y, Wu L, Chen Y et al (2016) Characterization of na extracelular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidante activity of enzymatic hydrolysates. Microbiol Res 182:49–58. https://doi.org/10.1016/j.micres.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  15. Tavafi H, Abdi-Ali AA, Ghadam P et al (2017) Screening and optimization of media compositions for extracelular alginate lyase production. Iran Biomed J 21(1):48–56. https://doi.org/10.6091/.21.1.48

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Chen J, Liu C et al (2010) Hybrid modeling of penicillin fermentation process based on least square support vector machine. Chem Eng Res Des 88(4):415–420. https://doi.org/10.1016/j.cherd.2009.08.010

    Article  CAS  Google Scholar 

  17. Chen P, Zhu Y, Men Y et al (2018) Purification and characterization of a novel alginate lyase from the marine bacterium Bacillus sp. Alg07. Mar Drugs 16(3):86. https://doi.org/10.3390/md16030086

    Article  CAS  PubMed Central  Google Scholar 

  18. Hifney AF, Fawzy MA, Abdel-Gawad KM et al (2018) Upgrading the antioxidante properties of fucoidan and alginate from Cystoseira trinodis by funfgal fermentation or enzymatic pretreatment of the seaweed biomass. Food Chem 269:387–395. https://doi.org/10.1016/j.foodchem.2018.07.026

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Wang ZP, Wang LN et al (2019) Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. Bioresour Technol 281:84–89. https://doi.org/10.1016/j.biortech.2019.02.056

    Article  CAS  PubMed  Google Scholar 

  20. Sun X, Shen W, Gao Y et al (2019) Heterologous expression and purification of a marine alginate lyase in Escherichia coli. Protein Expr Purif 153:97–104. https://doi.org/10.1016/j.pep.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  21. Qiao L, Yang X, Xie R et al (2020) Efficient production of ulvan lyase from Ulva prolifera by Catenovulum sp. LP based on stage-controlled fermentation strategy. Algal Res 46:101812. https://doi.org/10.1016/j.algal.2020.101812

    Article  Google Scholar 

  22. Ruiz HA, Rodríguez-Jasso RM, Rodríguez R et al (2012) Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem Eng J 65:90–95. https://doi.org/10.1016/j.bej.2012.03.007

    Article  CAS  Google Scholar 

  23. Gervais P, Molin P (2003) The role of water in solid state fermentation. Biochem Eng J 13(2–3):85–101. https://doi.org/10.1016/S1369-703X(02)00122-5

    Article  CAS  Google Scholar 

  24. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  25. Coelho MAZ, Salgado AM, Ribeiro BD (2018) In: EPUB (ed) Tecnologia Enzimática, 10 edn. FAPERJ, Petrópolis

  26. Merino A, Eibes G, Hormaza A (2019) Effect of copper and different carbon and nitrogen sources and the decolorization of an industrial dye mixture under solid-state fermentation. J Clean Prod 237:117713. https://doi.org/10.1016/j.jclepro.2019.117713

    Article  Google Scholar 

  27. Silva FL, Campos AO, Santos DA et al (2018) Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichoderma reesei CCT-2768 by solid state fermentation. Renew Energy 116(Part A):299–308. https://doi.org/10.1016/j.renene.2017.09.064

    Article  CAS  Google Scholar 

  28. Aita BC, Spannemberg SS, Schmaltz S et al (2019) Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates. J Enviro Chem Eng 7(3):103193. https://doi.org/10.1016/j.jece.2019.103193

    Article  CAS  Google Scholar 

  29. Bailey JE (1998) Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol Prog 14(1):8–20. https://doi.org/10.1021/bp9701269

    Article  CAS  PubMed  Google Scholar 

  30. Torres NV, Santos G (2015) The (Mathemayical) modeling process in biosciences. Front Genet 6:354. https://doi.org/10.3389/fgene.2015.00354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Can HJL, Hellinga C, Luyben KCA et al (1996) Strategy for dynamic process modelling based on neural networks in macroscopic balances. AIChE J 42(12):3403–3418. https://doi.org/10.1002/aic.690421211

    Article  Google Scholar 

  32. Adorno WT, Martins GAS, Silva WG (2013) Modelagem matemática aplicada á transferência de massa em alimento. Enciclopédia Biosfera 9:1465–1478

    Google Scholar 

  33. Lek S, Guegan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120(2–3):65–73. https://doi.org/10.1016/S0304-3800(99)00092-7

    Article  Google Scholar 

  34. Larrañaga P, Calvo B, Santana R et al (2006) Machine learning in bioinformatics. Brief Bioinform 7(1):86–112. https://doi.org/10.1093/bib/bbk007

    Article  CAS  PubMed  Google Scholar 

  35. Fabris F, Magalhães JPD, Freitas AA (2017) A review of supervised machine learning applied to ageing research. Biogerontology 18(2):171–188. https://doi.org/10.1007/s10522-017-9683-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Intell Ver 26:159–190. https://doi.org/10.1007/s10462-007-9052-3

    Article  Google Scholar 

  37. Vieira WF, Correa HT, Campos ES et al (2020) A novel multiple reactor system for the long-term production of L-asparaginase by Penicillium sp. LAMAI 505. Process Biochem 90:23–31. https://doi.org/10.1016/j.procbio.2019.11.012

    Article  CAS  Google Scholar 

  38. Heckmann D, Schlüter U, Weber APM (2017) Machine learning techniques for predictingcrop photosynthetic capacity from leaf reflectance spectra. Mol Plant 10(6):878–890. https://doi.org/10.1016/j.molp.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  39. Azuaje F (2016) Computational models for predicting drug responses in cancer research. Brief Bioinform 18(5):820–829. https://doi.org/10.1093/bib/bbw065

    Article  CAS  PubMed Central  Google Scholar 

  40. Barchi AC, Ito S, Escaramboni B et al (2016) Artificial intelligence approach based on near-infrared spectral data for monitoring of solid-state fermentation. Process Biochem 51(10):1338–1347. https://doi.org/10.1016/j.procbio.2016.07.017

    Article  CAS  Google Scholar 

  41. Malhis N, Wong ET, Nassar R et al (2015) Computational identification of MoRFs in protein sequences using hierarchical application of Bayes Rule. PLoS ONE 10(10):e0141603. https://doi.org/10.1371/jornal.pone.0141603

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kandoi G, Acencio ML, Lemke N (2015) Prediction of druggable proteins using machine learning and systems biology: a mini-review. Front Physiol 6:366. https://doi.org/10.3389/fphys.2015.00366

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pappu SMJ, Gummadi SN (2017) Artificial neural network and regression coupled genetic algorithm to optimize parameters for enhanced xylitol production by Debaryomyces nepalensis in bioreactor. Biochem Eng J 120:136–145. https://doi.org/10.1016/j.bej.2017.01.010

    Article  CAS  Google Scholar 

  44. Hanai T, Honda H, Ohkusu E et al (1999) Application of an artificial neural network and genetic algorithm for determination of process orbits in the koji making process. J Biosci Bioeng 87(4):507–512. https://doi.org/10.1016/s1389-1723(99)80101-7

    Article  CAS  PubMed  Google Scholar 

  45. Craninx M, Fievez V, Vlaeminck B et al (2008) Artificial neural network models of the rumen fermentation pattern in dairy cattle. Comput Electron Agr 60(2):226–238. https://doi.org/10.1016/j.compag.2007.08.005

    Article  Google Scholar 

  46. Desai KM, Vaidya BK, Singhal RS et al (2005) Use of an artificial neural network in modeling yeast biomass and yield of β-glucan. Process Biochem 40(5):1617–1626. https://doi.org/10.1016/j.procbio.2004.06.015

    Article  CAS  Google Scholar 

  47. Zhu B, Ye S, Jiang M et al (2009) Achieving the carbon intensity target of china: a least squares support vector machine with mixture kernel function approach. Appl Energy 233–234:196–207. https://doi.org/10.1016/j.apenergy.2018.10.048

    Article  Google Scholar 

  48. Zheng ZY, Guo XN, Zhu KX et al (2017) Artificial neural network—Genetic algorithm to optimize wheat germ fermentation condition: application to the production of two anti-tumor benzoquinones. Food Chem 227:264–270. https://doi.org/10.1016/j.foodchem.2017.01.077

    Article  CAS  PubMed  Google Scholar 

  49. Bao J, Zhang X, Zheng JH et al (2018) Mixed Fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by Random-Centroid Optimization. Food Chem 264:64–72. https://doi.org/10.1016/j.foodchem.2018.05.027

    Article  CAS  PubMed  Google Scholar 

  50. Rayovarapu B, Tallopragada P, Usha MS (2019) Statistical optimization of γ-aminobutyric acid production by response surface methodology and artificial neural network models using Lactobacillus fermentum isolated from palm wine. Biocatal Agric Biotechnol 22:101362. https://doi.org/10.1016/j.bcab.2019.101362

    Article  Google Scholar 

  51. Fischer J, Lopes VS, Cardoso SL et al (2017) Machine learning techniques applied to lignocellulosic ethanol in simultaneous hydrolysis and fermentation. Braz J Chem Eng 34(1):53–63. https://doi.org/10.1590/0104-6632.20170341s20150475

    Article  CAS  Google Scholar 

  52. Kimutai G, Ngenzi A, Said RN et al (2020) An optimum tea fermentation detection model based on deep convolutional neural networks. Data 5(2):44. https://doi.org/10.3390/data5020044

    Article  Google Scholar 

  53. Angelia RE, Linsangan N (2018) Classificação do nível de fermentação de grãos de cacau de corte cruzado usando o algoritmo k-NN. https: //doi.org/https://doi.org/10.1145/3309129.3309142. Accessed 8 Sept 2021

  54. Zhu X, Zhu Z (2018) The generalized predictive control of bacteria concentration in marine lysozyme fermentation process. Food Sci Nutr 6(8):2459–2465. https://doi.org/10.1002/fsn3.850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boggione JM, Allasia MB, Bassani G, Farruggia B (2016) Potential use of soybean hulls and waste paper as supports in SSF for celulase production by Aspergillus niger. Bioprocess Engi 6:1–8. https://doi.org/10.1016/j.bcab.2016.02.003

    Article  Google Scholar 

  56. Abud AKS, Araújo ML, Almeida RMRG (2015) Uso de resíduo de laranja lima e de casca de coco verde na produção de enzimas. Scientia Plena 11(10):1–8. https://doi.org/10.14808/sci.plena.2015.104201

    Article  CAS  Google Scholar 

  57. Growtthaman MK, Krishna C, Moo-Young M (2001) Fungal solid state fermentation —na overview. Agric Food Product 1:305–353. https://doi.org/10.1016/S1874-5334(01)80014-9

    Article  Google Scholar 

  58. Miller JG (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  59. Swift SM, Hudgens JW, Heselpoth RD et al (2014) Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLoS ONE 9(11):e112939. https://doi.org/10.1371/jornal.pone.0112939

    Article  PubMed  PubMed Central  Google Scholar 

  60. Saraiva SV, Amorim RFC, Carvalho FO et al (2014) Prognóstico de radiação solar através modelos que combinam as técnicas wavelet e redes neurais. Rev Bras Geogr Fís 7(5):808–817

    Article  Google Scholar 

  61. Karri RR, Tanzifi M, Yaraki MT, Sahu JN (2018) Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J Environ Manage 223:517–529. https://doi.org/10.1016/j.jenvman.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  62. Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems. O’Reilly Media Inc, Sebastopol

    Google Scholar 

  63. Reis CH (2018) Otimização de Hiperparâmetros em Redes Neurais Profundas. https://carlos-henreis.github.io/files/Monografia_TFG.pdf. Accessed 08 Sept 2021

  64. Goodswen SJ, Barratt JL, Kennedy PJ et al (2021) Machine learning and applications in microbiology. FEMS Microbiol Rev 45(5):fuab015. https://doi.org/10.1093/femsre/fuab015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saputro DRS, Widyaningsih P (2017) Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR). AIP Conf Proc 1868:040009. https://doi.org/10.1063/1.4995124

    Article  Google Scholar 

  66. Murtagh F (1991) Multilayer perceptrons for classification and regression. Neurocomputing 2(5–6):183–197. https://doi.org/10.1016/0925-2312(91)90023-5

    Article  Google Scholar 

  67. Silva RG, Cruz AJG, Hokka CO et al (2000) A hybrid feedforward neural network model for the cephalosporin C production process. Braz J Chem Eng 17:4–7. https://doi.org/10.1590/S0104-66322000000400023

    Article  Google Scholar 

  68. Bouaoudat BD, Yalaoui F, Amodeo L et al (2012) Efficient developments in modeling and optimization of solid state fermentation. Biotechnol Biotechnol Equip 29(6):1216–1225. https://doi.org/10.5504/bbeq.2012.0108

    Article  Google Scholar 

  69. Michel V, Gramfort A, Varoquaux G et al (2012) A supervised clustering approach for fMRI-based inference of brain states. Pattern Recognit 45(6):2041–2049. https://doi.org/10.1016/j.patcog.2011.04.006

    Article  Google Scholar 

  70. Oliveira AVM, Silva MM, Castro AF (2020) Estudo Comparativo de Desempenho Entre SVM e MLP no Reconhecimento de Imagens. I Meeting of Computation of the Oeste Potiguar—Pocket. https://periodicos.ufersa.edu.br/ecop/article/view/10115. Accessed 07 Sept 2021

  71. Palácios RHC, Silva IN, Goedtel A et al. (2013) Estimador de torque em motores de indução trifásicos com alimentação desequilibrada baseado em redes neurais artificiais. XX Brazilian Congress of Automatics. http://www.swge.inf.br/CBA2014/anais/PDF/1569934411.pdf Accessed 23 Aug 2021

  72. Achirul NM, Boro Seminar K, Nandika D et al (2018) A Comparison Study of kernel functions in the support vector machine and its application for termite detection. Information 9(1):5. https://doi.org/10.3390/info9010005

    Article  Google Scholar 

  73. Kasnavi SA, Aminafshar M, Shariati MM et al (2018) The effect of kernel selection on genome wide prediction of discrete traits by support vector machine. Gene Rep 11:279–282. https://doi.org/10.1016/j.genrep.2018.04.006

    Article  Google Scholar 

  74. Hassan MAM, Xu S, Kabir MMJ et al (2016) Performance evaluation of different kernels for support vector machine used in intrusion detection system. J Comput Netw Commun 8(6):39–53. https://doi.org/10.5121/ijcnc.2016.8604

    Article  Google Scholar 

  75. Chui KT, Lytras MD (2019) A novel MOGA-SVM multinomial classification for organ inflammation detection. Appl Sci 9(11):2284. https://doi.org/10.3390/app9112284

    Article  Google Scholar 

  76. Saeed S, Ong HC (2019) Performance of SVM with Multiple Kernel Learning for Classification Tasks of Imbalanced Datasets. http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2027%20(1)%20Jan.%202019/30%20JST-1133-2018.pdf. Accessed 01 Sept 2021

  77. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L et al (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408:189–215. https://doi.org/10.1016/j.neucom.2019.10.118

    Article  Google Scholar 

  78. Shaikhina T, Lowe D, Daga S et al (2015) Machine learning for predictive modelling based on small data in biomedical engineering. IFAC-PapersOnLine 48(20):469–474. https://doi.org/10.1016/j.genrep.2018.04.006

    Article  Google Scholar 

  79. Silva MCS, Silva CEF, Santos LM, Medeiros JA, Vieira RC, Abud AKS, Almeida RMRG, Tonholo J (2022) Alginate lyase produced by filamentous fungus through solid state fermentation using Sargassum from the Brazilian coast. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-022-01706-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by CNPq—Brazil (National Council of Research and Development of Brazil)—Process numbers 313195/2019-6, 440070/2019-8 and 407274/2018-9 and by calling 16/2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by GYSCMC, JVF, CEFS and FOC. The first draft of the manuscript was written by BMVG, Lucas Meili and CEFS and all authors evaluated previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carlos Eduardo De Farias Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Farias Silva, C.E., Costa, G.Y.S.C.M., Ferro, J.V. et al. Application of machine learning to predict the yield of alginate lyase solid-state fermentation by Cunninghamella echinulata: artificial neural networks and support vector machine. Reac Kinet Mech Cat 135, 3155–3171 (2022). https://doi.org/10.1007/s11144-022-02293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02293-9

Keywords

Navigation