Skip to main content
Log in

Catalytic performance of pyridinium dihydrogen phosphate ionic liquid for butyl acetate production: theoretical insights and reaction kinetic studies

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Catalytic properties of the protic ionic liquid pyridinium dihydrogen phosphate (P2HP) as a function of its electron structure was studied in the current paper for the first time. The electronic properties and chemical activity of P2HP were investigated by means of several theoretical approaches (using B3LYP/6–311 +  + G(2d,2p) level of theory) such as molecular electrostatic potential surface, natural population method, frontier molecular orbital analysis and reactivity (global and local) descriptors. In addition, Hammett functions were applied to know the P2HP acidity scale. It was found that an oxygen atom in the hydrogen phosphate anion attached to the aromatic ring manages the P2HP reactivity toward electrophilic reactions. On the other hand, a hydrogen atom in the other hydrogen phosphate fragment was responsible for the P2HP reactivity toward nucleophilic attack. Catalytic performance of the title compound was tested in the process of butyl acetate synthesis at different reaction conditions (temperature and catalyst loading). Important kinetic parameters (activation energy, pre-exponential factor, enthalpy, entropy and Gibbs free energy) were established as well. Moreover, a possible reaction mechanism for butyl acetate production in the presence of P2HP catalyst has been offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ventura SPM, de Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes for lioactive compounds: past, present, and future trends. Chem Rev 117(10):6984–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117(10):7190–7123

    Article  CAS  PubMed  Google Scholar 

  4. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  PubMed  Google Scholar 

  5. Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T (2012) Mixtures of ionic liquids. Chem Soc Rev 41:7780–7802

    Article  CAS  PubMed  Google Scholar 

  6. Bayley PM, Best AS, MacFarlanec DR, Forsyth M (2011) The effect of coordinating and non-coordinating additives on the transport properties in ionic liquid electrolytes for lithium batteries. Phys Chem Chem Phys 13:4632–4640

    Article  CAS  PubMed  Google Scholar 

  7. Denizalti S, Ali KA, Ela Ç, Ekmekci M, Erten-Ela S (2018) Dye-sensitized solar cells using ionic liquids as redox mediator. Chem Phys Lett 691:373–378

    Article  CAS  Google Scholar 

  8. Liu F, Deng Y, Han X, Hu W, Zhong C (2016) Electrodeposition of metals and alloys from ionic liquids. J Alloys Comp 654:163–167

    Article  CAS  Google Scholar 

  9. Lahiri A, Pulletikurthi G, Endres F (2019) A Review on the electroless deposition of functional materials in ionic liquids for batteries and catalysis. Front Chem 7:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mazzucotelli M, Bicchi C, Marengo A, Rubiolo P, Galli S, Anderson JL, Sgorbini B, Cagliero C (2019) Ionic liquids as stationary phases for gas chromatography-unusual selectivity of ionic liquids with a phosphonium cation and different anions in the flavor, fragrance and essential oil analyses. J Chromatograph A 1583:124–135

    Article  CAS  Google Scholar 

  11. Kunz W, Häckl K (2016) The hype with ionic liquids as solvents. Chem Phys Lett 661:6–12

    Article  CAS  Google Scholar 

  12. Qureshi ZS, Deshmukh KM, Bhanage BM (2014) Applications of ionic liquids in organic synthesis and catalysis. Clean Technol Environ Policy 16:1487–1513

    Article  Google Scholar 

  13. Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248(21–24):2459–2477

    Article  CAS  Google Scholar 

  14. Xu P, Liang S, Zong M-H, Lou W-Y (2021) Ionic liquids for regulating biocatalytic process: achievements and perspectives. Biotechnol Adv 51:107702

    Article  CAS  PubMed  Google Scholar 

  15. Tao D-J, Lu X-M, Lu J-F, Huang K, Zhou Z, Wu Y-T (2011) Noncorrosive ionic liquids composed of [HSO4] as esterification catalysts. Chem Eng J 171(3):1333–1339

    Article  CAS  Google Scholar 

  16. Fraga-Dubreuil J, Bourahla K, Rahmouni M, Bazureau JP, Hamelin J (2002) Catalyzed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media. Catal Commun 3(5):185–190

    Article  CAS  Google Scholar 

  17. Jing Y, Zhu R, Liu C, Zhang D (2017) Theoretical elucidation of themechanismand kinetic experimental phenomena on the esterification of α-tocopherol with succinic anhydride: catalysis of a histidine derivative vs an imidazolium-based ionic liquid. J Organomet Chem 82(23):12267–12275

    Article  CAS  Google Scholar 

  18. Tao Y, Dong R, Pavlidisc IV, Chen B, Tan T (2016) Using imidazolium-based ionic liquids as dual solvent-catalysts for sustainable synthesis of vitamin esters: inspiration from bio- and organo-catalysis. Green Chem 18:1240–1248

    Article  CAS  Google Scholar 

  19. Tankov I, Yankova R (2018) Theoretical (density functional theory) studies on the structural, electronic and catalytic properties of the ionic liquid 4-amino-1H-1,2,4-triazolium nitrate. J Mol Liq 269:529–539

    Article  CAS  Google Scholar 

  20. Tankov I, Yankova R (2019) Quantum mechanical and reaction dynamics investigation of butyl acetate synthesis in the presence of pyridinium hydrogen sulfate. J Mol Liq 278:183–194

    Article  CAS  Google Scholar 

  21. Tankov I, Yankova R, Genieva S, Mitkova M, Stratiev D (2017) Density functional theory study on the ionic liquid pyridinium hydrogen sulfate. J Mol Struct 1139:400–406

    Article  CAS  Google Scholar 

  22. Vafaeezadeh M, Hashemi MM (2014) Efficient fatty acid esterification using silica supported Brønsted acidic ionic liquid catalyst: experimental study and DFT modeling. Chem Eng J 250:35–41

    Article  CAS  Google Scholar 

  23. Caratelli C, Hajek J, Cirujano FG, Waroquier M, Llabrés i Xamena FX, Van Speybroeck V (2017) Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. J Catal 352:401–414

    Article  CAS  Google Scholar 

  24. Wang S, Goulas K, Iglesia E (2016) Condensation and esterification reactions of alkanals, alkanones, and alkanols on TiO2: elementary steps, site requirements, and synergistic effects of bifunctional strategies. J Catal 340:302–320

    Article  CAS  Google Scholar 

  25. Oberlintner A, Likozar B, Novak U (2021) Hydrophobic functionalization reactions of structured cellulose nanomaterials: mechanisms, kinetics and in silico multi-scale models. Carbohyd Polym 259:117742

    Article  CAS  Google Scholar 

  26. Ješić D, Jurković DL, Pohar A, Suhadolnik L, Likozar B (2021) Engineering photocatalytic and photoelectrocatalytic CO2 reduction reactions: mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modelling simulations. Chem Eng J 407:126799

    Article  Google Scholar 

  27. Bajec D, Grom M, Jurković DL, Kostyniuk A, Huš M, Grilc M, Likozar B, Pohar A (2020) A review of methane activation reactions by halogenation: catalysis, mechanism, kinetics, modeling, and reactors. Processes 8(4):443

    Article  CAS  Google Scholar 

  28. Li K, Yang Z, Zhao J, Lei J, Samir XJ, Mushrif H, Yang Y (2015) Mechanistic and kinetic studies on biodiesel production catalyzed by an efficient pyridinium-based ionic liquid. Green Chem 17(8):4271–4280

    Article  CAS  Google Scholar 

  29. Dong L-L, He L, Tao G-H, Hu C (2013) High yield of ethyl valerate from the esterification of renewable valeric acid catalyzed by amino acid ionic liquids. RSC Adv 3:4806–4813

    Article  CAS  Google Scholar 

  30. Lunagariya J, Dhar A, Vekariya RL (2017) Efficient esterification of n-butanol with acetic acid catalyzed by the Brønsted acidic ionic liquids: influence of acidity. RSC Adv 7:5412–5420

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision A. 03. Gaussian Inc, Wallingford CT

    Google Scholar 

  32. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  33. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  34. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse functionaugmented basis sets for anion calculations. III. The 3–21+G basis set for first-row elements, Li–F. J Comput Chem 4(3):294–301

    Article  CAS  Google Scholar 

  35. Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6–311+ G (d, p). J Phys Chem A 109:2937–2941

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalez C, Schlegel HB (1991) Improved algorithms for reaction path following: higherorder implicit algorithms. J Chem Phys 95:5853–5860

    Article  CAS  Google Scholar 

  37. Dennington R, Keith TA (2016) Millam JM Gauss View, Version 6. Semichem Inc., Shawnee Mission, KS

    Google Scholar 

  38. Gangadharan RP, Krishnan SS (2014) Natural Bond Orbital (NBO) population analysis of 1-azanapthalene-8-ol. Acta Phys Pol A 125(1):18–22

    Article  Google Scholar 

  39. Sadhukhan D, Maiti M, Bauzá A, Frontera A, Garribba E, Gomez-García CJ (2019) Synthesis, structure, physicochemical characterization and theoretical evaluation of non-covalent interaction energy of a polymeric copper(II)-hydrazone complex. Inorg Chim Acta 484:95–103

    Article  CAS  Google Scholar 

  40. Prajapati P, Pandey J, Shimpi MR, Srivastava A, Tandon P, Velaga SP, Sinha K (2016) Combined spectroscopic and quantum chemical studies of ezetimibe. J Mol Struct 1125:193–203

    Article  CAS  Google Scholar 

  41. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  42. Martínez-Araya JI (2015) Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions? J Math Chem 53(2):451–465

    Article  Google Scholar 

  43. Tankov I, Yankova R (2019) Mechanistic investigation of molecular geometry, intermolecular interactions and spectroscopic properties of pyridinium nitrate. Spectrochim Acta Part A 219:53–67

    Article  CAS  Google Scholar 

  44. Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  45. Kolah AK, Asthana NS, Vu DT, Lira CT, Miller DJ (2008) Reaction kinetics for the heterogeneously catalyzed esterification of succinic acid with ethanol. Ind Eng Chem Res 47(15):5313–5317

    Article  CAS  Google Scholar 

  46. Tao D-J, Wu Y-T, Zhou Z, Geng J, Hu X-B, Zhang Z-B (2011) Kinetics for the esterification reaction of n-butanol with acetic acid catalyzed by noncorrosive Brønsted acidic ionic liquids. Ind Eng Chem Res 50(4):1989–1996

    Article  CAS  Google Scholar 

  47. Akyalçın S, Altıokka MR (2012) Kinetics of esterification of acetic acid with 1-octanol in the presence of Amberlyst 36. Appl Catal A Gen 429–430:79–84

    Article  Google Scholar 

  48. Lawal MM, Govender T, Maguire GEM, Kruger HG, Honarparvar B (2017) DFT study of the acid-catalyzed esterification reaction mechanism of methanol with carboxylic acid and its halide derivatives. Int J Quantum Chem 118(4):25497–25509

    Article  Google Scholar 

  49. Hossain MA, Jewaratnam J, Ramalingam A, Sahud JN, Ganesan P (2018) A DFT method analysis for formation of hydrogen rich gas from acetic acid by steamreforming process. Fuel 212:49–60

    Article  CAS  Google Scholar 

  50. Radhakrishnan R, Thiripuranthagan S, Devarajan A, Kumaravel S, Erusappan E, Kannan K (2017) Oxidative esterification of furfural by Au nanoparticles supported CMK-3 mesoporous catalysts. Appl Catal A 545:33–43

    Article  CAS  Google Scholar 

  51. Tankov I, Yankova R (2019) DFT analysis, reaction kinetics and mechanism of esterification using pyridinium nitrate as a green catalyst. J Mol Liq 277:241–253

    Article  CAS  Google Scholar 

  52. Nakamura K, Mizuta R, Suganuma S, Tsuji E, Katada N (2017) Compensation between activation entropy and enthalpy in reactions of aromatic hydrocarbons catalyzed by solid acids. Catal Commun 102:103–107

    Article  CAS  Google Scholar 

  53. Sharma M, Toor AP, Wanchoo RK (2014) Reaction kinetics of catalytic esterification of nonanoic acid with ethanol over amberlyst 15. Int J Chem React Eng 12(1):451–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivaylo Tankov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tankov, I., Yankova, R. Catalytic performance of pyridinium dihydrogen phosphate ionic liquid for butyl acetate production: theoretical insights and reaction kinetic studies. Reac Kinet Mech Cat 135, 3131–3153 (2022). https://doi.org/10.1007/s11144-022-02292-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02292-w

Keywords

Navigation