Skip to main content
Log in

Zinc porphyrin-based porous polymer for the efficient CO2 fixation to cyclic carbonates at ambient temperature

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work reports the synthesis of Zinc porphyrin-based porous (POP-ZnTPP) by a typical Yamamoto-Ullmann coupling reaction, which exhibited abundant tiny nanopores, excellent CO2 adsorption capacity, and CO2/N2 selectivity. The open pore environment of POP-ZnTPP facilitated the exposure of active sites, which intensified the catalytic activity in the cycloaddition reaction of epoxides (PO) with CO2 under mild conditions. As expected, POP-ZnTPP catalyst completely converted PO to cyclic carbonates (COCs) at ambient temperature (25 °C, 1.5 MPa). It is also worth noting that POP-ZnTPP could convert PO into COCs under the simulated flue gas (15% CO2 and 85% N2, v/v) atmosphere, which is very favorable for industrial applications of CO2. In addition, POP-ZnTPP catalyst as one of the most outstanding catalysts exhibited excellent broad substrate scope and remarkable reusability. This work has a certain guiding significance for developing an environmentally friendly COC production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mikkelsen M, Jørgensena M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    Article  CAS  Google Scholar 

  2. Yang LH, Wang HM (2014) Recent advances in carbon dioxide capture, fixation, and activation by using N-heterocyclic carbenes. Chemsuschem 7:962–998

    Article  CAS  PubMed  Google Scholar 

  3. Wolde-Rufael Y (2010) Coal consumption and economic growth revisited. Appl Energy 87:160–167

    Article  Google Scholar 

  4. Datta SJ, Khumnoon C, Lee ZH, Moon WK, Docao S, Nguyen TH, Hwang IC, Moon D, Oleynikov P, Terasaki O, Yoon KB (2015) CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate. Science 350:302–306

    Article  CAS  PubMed  Google Scholar 

  5. Xu J, Wu F, Jiang Q, Li YX (2015) Mesoporous carbon nitride grafted with n-bromobutane: a high-performance heterogeneous catalyst for the solvent-free cycloaddition of CO2 to propylene carbonate. Catal Sci Technol 5:447–454

    Article  CAS  Google Scholar 

  6. Ramidi P, Sullivan SZ, Gartia Y, Munshi P, Griffin WO, Darsey JA, Biswas A, Shaikh AU, Ghosh A (2011) Catalytic cyclic carbonate synthesis using epoxide and carbon dioxide: combined catalytic effect of both cation and anion of an ionic CrV(O) amido macrocyclic complex. Ind Eng Chem Res 50:7800–7807

    Article  CAS  Google Scholar 

  7. Yang ZZ, Zhao YN, He LN (2011) CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv 1:545–567

    Article  CAS  Google Scholar 

  8. Darensbourg DJ (2007) Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem Rev 107:2388–2410

    Article  CAS  PubMed  Google Scholar 

  9. Werner T, Büttner H (2014) Phosphorus-based bifunctional organocatalysts for the addition of carbon dioxide and epoxides. Chemsuschem 7:3268–3271

    Article  CAS  PubMed  Google Scholar 

  10. Coulembier O, Moins S, Lemaur V, Lazzaroni R, Dubois P (2015) Efficiency of DBU/iodine cooperative dual catalysis for the solvent-free synthesis of five-membered cyclic carbonates under atmospheric CO2 pressure. J CO2 Utiliz 10:7–11

    Article  CAS  Google Scholar 

  11. Fu XY, Zhou DG, Wang K, Jing HW (2016) Pd/C as a high efficient and reusable catalyst for cycloaddition of CO2 to epoxides. J CO2 Utiliz 14:31–36

    Article  CAS  Google Scholar 

  12. Schäffner B, Schäffner F, Verevkin SP (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581

    Article  PubMed  Google Scholar 

  13. Souza LFS, Ferreira PRR, de Medeiros JL (2014) Production of DMC from CO2 via indirect route: technical–economical–environmental assessment and analysis. ACS Sustain Chem Eng 2:62–69

    Article  CAS  Google Scholar 

  14. Nohra B, Candy L, Blanco J-F, Guerin C, Raoul Y, Mouloungui Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46:3771–3792

    Article  CAS  Google Scholar 

  15. Clements JH (2013) Reactive applications of cyclic alkylene carbonates. Ind Eng Chem Res 42:663

    Article  Google Scholar 

  16. Wang J, Leong J, Zhang Y (2014) Efficient fixation of CO2 into cyclic carbonates catalysed by silicon-based main chain poly-imidazolium salts. Green Chem 16:4515–4519

    Article  CAS  Google Scholar 

  17. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ, Kerfeld CA, Morris RH, Peden CH, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JN, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang ZZ, He LN, Miao CX, Chanfreau S (2010) Lewis basic ionic liquids-catalyzed conversion of carbon dioxide to cyclic carbonates. Adv Synth Catal 352:2233–2240

    Article  CAS  Google Scholar 

  19. Liu FW, Du SS, Zhang WW, Ma JJ, Wang SS, Liu MS, Liu FS (2022) Construction of zwitterionic porous organic frameworks with multiple active sites for highly efficient CO2 adsorption and synergistic conversion. Chem Eng J 435:134921

    Article  CAS  Google Scholar 

  20. Dai ZF, Sun Q, Liu XL, Guo LP (2017) Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. Chemsuschem 10:1186–1192

    Article  CAS  PubMed  Google Scholar 

  21. Ji GP, Yang ZZ, Zhang HY, Zhao YF, Yu B, Ma ZS, Liu ZM (2016) Hierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO2 capture and conversion. Angew Chem Int Ed 136:15861–15864

    Google Scholar 

  22. He WF, Wen MS, Shi LJ, Wang RM, Li FW (2022) Porous polymeric metalloporphyrin obtained through Sonogashira coupling: catalytic performance at CO2 cycloaddition to epoxides. J Solid State Chem 309:122965

    Article  CAS  Google Scholar 

  23. Beyzavi MH, Klet RC, Tussupbayev S (2014) A Hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J Am Chem Soc 136:15861–15864

    Article  CAS  PubMed  Google Scholar 

  24. Dai WL, Mao P, Liu Y, Zhang SQ, Li B, Yang LX, Luo XB, Zou JP (2020) Quaternary phosphonium salt-functionalized Cr-MIL-101: a bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. J CO2 Utiliz 36:295–305

    Article  CAS  Google Scholar 

  25. Roeser J, Kailasam K, Thomas A (2014) Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. Chemsuschem 5:1793–1799

    Article  Google Scholar 

  26. Xie Y, Wang TT, Yang RX, Huang NY, Zou K, Deng WQ (2014) Efficient fixation of CO2 by a zinc-coordinated conjugated microporous polymer. Chemsuschem 7:2110–2114

    Article  CAS  PubMed  Google Scholar 

  27. Chen J, Li H, Zhong MM, Yang QH (2016) Hierarchical mesoporous organic polymer with an intercalated metal complex for the efficient synthesis of cyclic carbonates from flue gas. Green Chem 18:6493–6500

    Article  CAS  Google Scholar 

  28. Luo RC, Chen M, Liu XY (2020) Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites. J Mater Chem 8:18408–18424

    Article  CAS  Google Scholar 

  29. Kramer S, Bennedsen NR, Kegnæs S (2018) Porous organic polymers containing active metal centers as catalysts for synthetic organic chemistry. ACS Catal 8:6961–6982

    Article  CAS  Google Scholar 

  30. Shinde DB, Kandambeth S, Pachfule P, Kumar RR, Banerjee R (2015) Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chem Commun 51:310–331

    Article  CAS  Google Scholar 

  31. Wang XS, Liu J, Bonefont JM, Yuan DQ, Thallapally PK, Ma S (2013) A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons for oil spill cleanup. Chem Commun 49:1533–1535

    Article  CAS  Google Scholar 

  32. Brüller S, Liang HW, Kramm UI, Krumpfer JW, Feng X, Müllen K (2015) Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. J Mater Chem A 3:23799–23808

    Article  Google Scholar 

  33. Jiang J, Luo RC, Zhou XT, Chen YJ, Ji HB (2018) Photocatalytic properties and mechanistic insights into visible light-promoted aerobic oxidation of sulfides to sulfoxides via tin porphyrin-based porous aromatic frameworks. Adv Synth Catal 360:4402–4411

    Article  CAS  Google Scholar 

  34. Chen AB, Zhang YZ, Chen JZ, Chen LM, Yu YF (2015) Metalloporphyrin-based organic polymers for carbon dioxide fixation to cyclic carbonate. J Mater Chem A 3:9807–9816

    Article  CAS  Google Scholar 

  35. Flechtner K, Kretschmann A, Bradshaw LR (2007) Surface-Confined Two-Step Synthesis of the Complex (Ammine)(meso-tetraphenylporphyrinato)-zinc(II) on Ag(111). Journal of Physical Chemistry C 111:5821–5824

    Article  CAS  Google Scholar 

  36. Killian MS, Gnichwitz J-F, Hirsch A (2010) ToF-SIMS and XPS Studies of the Adsorption Characteristics of a Zn-Porphyrin on TiO2. Langmuir 26:3531–3538

    Article  CAS  PubMed  Google Scholar 

  37. Chen YJ, Luo RC, Xu QH, Jiang J, Zhou XT, Ji HB (2018) Metalloporphyrin Polymers with Intercalated Ionic Liquids for Synergistic CO2 Fixation via Cyclic Carbonate Production. ACS Sustainable Chemistry & Engineering 6:1074–1082

    Article  CAS  Google Scholar 

  38. Castro-Gomez F, Salassa G, Kleij AW (2013) A DFT Study on the Mechanism of the Cycloaddition Reaction of CO2 to Epoxides Catalyzed by Zn(Salphen) Complexes. Chemistry-A European Journal 19:6289–6298

    Article  CAS  PubMed  Google Scholar 

  39. Wu X, North M (2017) A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem 10:74–78

    Article  CAS  PubMed  Google Scholar 

  40. Jiang X, Gou F, Jing H (2014) Alternating copolymerization of CO2 and propylene oxide catalyzed by C2v-porphyrin cobalt: Selectivity control and a kinetic study. J Catal 313:159–167

    Article  CAS  Google Scholar 

  41. Ema T, Miyazaki Y, Shimonishi J, Maeda C, Hasegawa J (2014) Bifunctional Porphyrin Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and CO2: Structural Optimization and Mechanistic Study. Journal of the American Chemical Society 136:15270–152791

  42. Peng J, Geng Y, Yang HJ, He W, Wei Z, Yang J, Guo CY(2017) Efficient solvent-free fixation of CO2 into cyclic carbonates catalyzed by Bi(III) porphyrin/TBAI at atmospheric pressure. Molecular Catalysis 432:37–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4640 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Guo, X., Zhang, L. et al. Zinc porphyrin-based porous polymer for the efficient CO2 fixation to cyclic carbonates at ambient temperature. Reac Kinet Mech Cat 135, 2565–2578 (2022). https://doi.org/10.1007/s11144-022-02284-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02284-w

Keywords

Navigation