Skip to main content
Log in

Influence of Fe–Cu-SSZ-13 and hybrid Fe–Cu-SSZ-13 zeolite catalyst in ammonia-selective catalytic reduction (NH3-SCR) of NOx

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The investigation of ammonia selective catalytic reduction (NH3-SCR) was done for reduction of NOx emission by using Fe–Cu-SSZ-13 and hybrid Fe–Cu-SSZ-13 zeolite catalyst, as a reaction generates ozone and causes acid rain in the atmosphere. Fe–Cu-SSZ-13 and hybrid Fe–Cu-SSZ-13 zeolite catalyst were prepared by ion exchange and wet impregnation method with three different molar ratios between Zn and CNTs are 1:5, 1:10, and 1:15 for hybrid Fe–Cu-SSZ-13. The prepared zeolite catalyst was characterized for microstructural and morphological characteristics such as BET surface area measurement, XRD pattern, SEM, XPS spectra, NH3-TPD, and H2-TPR characteristics and catalytic activity was carried out. As a results of catalytic activity indicating that a molar ratio of 1:10 (Zn1–CNT10/Fe–Cu-SSZ-13) exhibits better NOx conversion efficiency with and without SO2 gas in feed of 100% and 90% at temperature range of 200 °C to 500 °C indicating that addition of CNTs and Zn species plays a vital role of NOx conversion and anti-sulfur performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BET:

Brunauer–Emmett–Teller

NH3-SCR:

Ammonia selective catalytic reduction

SEM:

Scanning electron microscope

TPD:

Temperature programmed desorption

TPR:

Temperature programmed reduction

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

References

  1. Raja S, Alphin MS (2020) Systematic effects of Fe doping on the activity of V2O5/TiO2-carbon nanotube catalyst for NH3-SCR of NOx. J Nanoparticle Res 22:190. https://doi.org/10.1007/s11051-020-04919-2

    Article  CAS  Google Scholar 

  2. Raja S, Alphin MS (2020) Low temperature selective catalytic reduction of NOx by NH3 over Cu modified V2O5/TiO2—carbon nanotube catalyst. Reac Kinet Mech Cat 129:787–804. https://doi.org/10.1007/s11144-020-01735-6

    Article  CAS  Google Scholar 

  3. Long RQ, Yang RT (1999) Superior Fe-ZSM-5 Catalyst for selective catalytic reduction of nitric oxide by ammonia. J Am Chem Soc 121:5595–5596. https://doi.org/10.1021/ja9842262

    Article  CAS  Google Scholar 

  4. Qi G, Yang RT (2005) Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl Catal B 60:13–22. https://doi.org/10.1016/j.apcatb.2005.01.012

    Article  CAS  Google Scholar 

  5. Ye Q, Wang L, Yang R (2012) Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5. Appl Catal A 427–428:24–34. https://doi.org/10.1016/j.apcata.2012.03.026

    Article  CAS  Google Scholar 

  6. Sultana A, Sasaki M, Suzuki K, Hamada H (2013) Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR. Catal Commun 41:21–25. https://doi.org/10.1016/j.catcom.2013.06.028

    Article  CAS  Google Scholar 

  7. Fickel DW, Lobo RF (2010) Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD. J Phys Chem C 114:1633–1640. https://doi.org/10.1021/jp9105025

    Article  CAS  Google Scholar 

  8. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J Catal 275:187–190. https://doi.org/10.1016/j.jcat.2010.07.031

    Article  CAS  Google Scholar 

  9. Gao F (2020) Fe-exchanged small-pore zeolites as ammonia selective catalytic reduction (NH3-SCR) catalysts. Catalyst. 10:1324

    Article  CAS  Google Scholar 

  10. Borfecchia E, Lomachenko KA, Giordanino F, Falsig H, Beato P, Soldatov AV, Bordiga S, Lamberti C (2015) Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem Sci 6:548–563. https://doi.org/10.1039/C4SC02907K

    Article  CAS  PubMed  Google Scholar 

  11. Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J (2014) In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl Catal 156–157:428–437. https://doi.org/10.1016/j.apcatb.2014.03.048

    Article  CAS  Google Scholar 

  12. Høj M, Beier MJ, Grunwaldt J-D, Dahl S (2009) The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts. Appl Catal B 93:166–176. https://doi.org/10.1016/j.apcatb.2009.09.026

    Article  CAS  Google Scholar 

  13. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Appl Catal B 95:348–357. https://doi.org/10.1016/j.apcatb.2010.01.013

    Article  CAS  Google Scholar 

  14. Schwidder M, Kumar MS, Klementiev K, Pohl MM, Bruckner A, Grunert W (2005) Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: I. Relations between active site structure and catalytic performance. J Catal 231:314–330. https://doi.org/10.1016/j.jcat.2005.01.031

    Article  CAS  Google Scholar 

  15. Wang J, Dong X, Wang Y, Li Y (2015) Effect of the calcination temperature on the performance of a CeMoOx catalyst in the selective catalytic reduction of NOx with ammonia. Catal Today 245:10–15. https://doi.org/10.1016/j.cattod.2014.07.035

    Article  CAS  Google Scholar 

  16. Kim J, Jentys A, Maier SM, Lercher JA (2013) Characterization of Fe-exchanged BEA zeolite under NH3 selective catalytic reduction conditions. J Phys Chem C 117:986–993. https://doi.org/10.1021/jp309277n

    Article  CAS  Google Scholar 

  17. Ma L, Li J, Arandiyan H, Shi W, Liu C, Fu L (2012) Influence of calcination temperature on Fe/HBEA catalyst for the selective catalytic reduction of NOx with NH3. Catal Today 184:145–152. https://doi.org/10.1016/j.cattod.2011.10.007

    Article  CAS  Google Scholar 

  18. Solymosi F, Kiss J (1978) Adsorption and reduction of NO on tin(IV) oxide doped with chromium(III) oxide. J Catal 54:42–51. https://doi.org/10.1016/0021-9517(78)90025-8

    Article  CAS  Google Scholar 

  19. Pan KL, Young CW, Pan GT, Chang MB (2020) Catalytic reduction of NO by CO with Cu-based and Mn-based catalysts. Catal Today 348:15–25. https://doi.org/10.1016/j.cattod.2019.08.038

    Article  CAS  Google Scholar 

  20. Yu R, Zhao Z, Huang S, Zhang W (2020) Cu-SSZ-13 zeolite–metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NOx. Appl Catal B 269:118825. https://doi.org/10.1016/j.apcatb.2020.118825

    Article  CAS  Google Scholar 

  21. Zhang T, Li J, Liu J, Wang D, Zhao Z, Cheng K, Li J (2015) High activity and wide temperature window of Fe-Cu-SSZ-13 in the selective catalytic reduction of NO with ammonia. AIChE J 61:3825–3837. https://doi.org/10.1002/aic.14923

    Article  CAS  Google Scholar 

  22. Wang J, Peng Z, Chen Y, Bao W, Chang L, Feng G (2015) In-situ hydrothermal synthesis of Cu-SSZ-13/cordierite for the catalytic removal of NOx from diesel vehicles by NH3. Chem Eng J 263:9–19. https://doi.org/10.1016/j.cej.2014.10.086

    Article  CAS  Google Scholar 

  23. Wan J, Chen J, Zhao R, Zhou R (2021) One-pot synthesis of Fe/Cu-SSZ-13 catalyst and its highly efficient performance for the selective catalytic reduction of nitrogen oxide with ammonia. J Environ Sci 100:306–316. https://doi.org/10.1016/j.jes.2020.08.003

    Article  CAS  Google Scholar 

  24. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J Phys Chem C 116:4809–4818. https://doi.org/10.1021/jp212450d

    Article  CAS  Google Scholar 

  25. Biesinger MC (2017) Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal 49:1325–1334. https://doi.org/10.1002/sia.6239

    Article  CAS  Google Scholar 

  26. Zhang D, Yang RT (2018) N2O formation pathways over zeolite-supported Cu and Fe catalysts in NH3-SCR. Energy Fuels 32:2170–2182. https://doi.org/10.1021/acs.energyfuels.7b03405

    Article  CAS  Google Scholar 

  27. Han S, Cheng J, Zheng C, Ye Q, Cheng S, Kang T, Dai H (2017) Effect of Si/Al ratio on catalytic performance of hydrothermally aged Cu-SSZ-13 for the NH3-SCR of NO in simulated diesel exhaust. Appl Surf Sci 419:382–392. https://doi.org/10.1016/j.apsusc.2017.04.198

    Article  CAS  Google Scholar 

  28. Liu P, Hensen EJM (2013) Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J Am Chem Soc 135:14032–14035. https://doi.org/10.1021/ja406820f

    Article  CAS  PubMed  Google Scholar 

  29. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  30. Dzwigaj S, Stievano L, Wagner FE, Che M (2007) Effect of preparation and metal content on the introduction of Fe in BEA zeolite, studied by DR UV–vis, EPR and Mössbauer spectroscopy. J Phys Chem Solids 68:1885–1891. https://doi.org/10.1016/j.jpcs.2007.05.016

    Article  CAS  Google Scholar 

  31. Martins GVA, Berlier G, Bisio C, Coluccia S, Pastore HO, Marchese L (2008) Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J Phys Chem C 112:7193–7200. https://doi.org/10.1021/jp710613q

    Article  CAS  Google Scholar 

  32. Chen P, Jabłońska M, Weide P, Caumanns T, Weirich T, Muhler M, Moos R, Palkovits R, Simon U (2016) Formation and effect of NH4+ intermediates in NH3–SCR over Fe-ZSM-5 zeolite catalysts. ACS Catal 6:7696–7700. https://doi.org/10.1021/acscatal.6b02496

    Article  CAS  Google Scholar 

  33. Cui Y, Wang Y, Walter ED, Szanyi J, Wang Y, Gao F (2020) Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts. Catal Today 339:233–240. https://doi.org/10.1016/j.cattod.2019.02.037

    Article  CAS  Google Scholar 

  34. Foo R, Vazhnova T, Lukyanov DB, Millington P, Collier J, Rajaram R, Golunski S (2015) Formation of reactive Lewis acid sites on Fe/WO3–ZrO2 catalysts for higher temperature SCR applications. Appl Catal B 162:174–179. https://doi.org/10.1016/j.apcatb.2014.06.034

    Article  CAS  Google Scholar 

  35. Gao F, Wang Y, Kollár M, Washton NM, Szanyi J, Peden CHF (2015) A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts. Catal Today 258:347–358. https://doi.org/10.1016/j.cattod.2015.01.025

    Article  CAS  Google Scholar 

  36. Grossale A, Nova I, Tronconi E (2009) Ammonia blocking of the “Fast SCR” reactivity over a commercial Fe-zeolite catalyst for Diesel exhaust aftertreatment. J Catal 265:141–147. https://doi.org/10.1016/j.jcat.2009.04.014

    Article  CAS  Google Scholar 

  37. Heinrich F, Schmidt C, Löffler E, Menzel M, Grunert W (2002) Fe–ZSM-5 catalysts for the selective reduction of NO by Isobutane—the problem of the active sites. J Catal 212:157–172. https://doi.org/10.1006/jcat.2002.3775

    Article  CAS  Google Scholar 

  38. Xia Y, Zhan W, Guo Y, Guo Y, Lu G (2016) Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: influence of Fe content. Chin J Catal 37:2069–2078. https://doi.org/10.1016/S1872-2067(16)62534-2

    Article  CAS  Google Scholar 

  39. Chen J, Zhao R, Zhou R (2018) A new insight into active Cu2+ species properties in one-pot synthesized Cu-SSZ-13 catalysts for NOx reduction by NH3. ChemCatChem 10:5182–5189. https://doi.org/10.1002/cctc.201801234

    Article  CAS  Google Scholar 

  40. Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G (1996) Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501. https://doi.org/10.1006/jcat.1996.0048

    Article  CAS  Google Scholar 

  41. Coq B, Mauvezin M, Delahay G, Kieger S (2000) Kinetics and mechanism of the N2O reduction by NH3 on a Fe-zeolite-beta catalyst. J Catal 195:298–303. https://doi.org/10.1006/jcat.2000.2980

    Article  CAS  Google Scholar 

  42. Zhang T, Qiu Y, Liu G, Chen J, Peng Y, Liu B, Li J (2020) Nature of active Fe species and reaction mechanism over high-efficiency Fe/CHA catalysts in catalytic decomposition of N2O. J Catal 392:322–335. https://doi.org/10.1016/j.jcat.2020.10.015

    Article  CAS  Google Scholar 

  43. Liu Q, Bian C, Jin Y, Pang L, Chen Z, Li T (2022) Influence of calcination temperature on the evolution of Fe species over Fe-SSZ-13 catalyst for the NH3-SCR of NO. Catal Today 388–389:158–167. https://doi.org/10.1016/j.cattod.2020.06.085

    Article  CAS  Google Scholar 

Download references

Funding

The authors didn’t receive funds, grants and other supports for this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Writing—Original draft Preparation, Resource: MSK; Formal analysis and investigation, Supervision, Writing—Review and editing: MSA.

Corresponding author

Correspondence to M. Sunil Kumar.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.S., Alphin, M.S. Influence of Fe–Cu-SSZ-13 and hybrid Fe–Cu-SSZ-13 zeolite catalyst in ammonia-selective catalytic reduction (NH3-SCR) of NOx. Reac Kinet Mech Cat 135, 2551–2563 (2022). https://doi.org/10.1007/s11144-022-02283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02283-x

Keywords

Navigation