Skip to main content
Log in

Removal of reactive blue 250 dye from aqueous medium using Cu/Fe catalyst supported on Nb2O5 through oxidation with H2O2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study aimed to synthesize a new bimetallic Fenton catalyst using Nb2O5 as the support for the active metal species of copper and iron. The coprecipitation method was used to prepare the catalyst, characterized by several technical means. The efficiency of the material was evaluated in batch mode in the degradation of a reactive blue 250 textile dye in aqueous media, with the study of the critical variables for the process. The catalyst employed resulted in 80% decolorization of the RB dye under the experimental conditions of pH 3, [Catalyst]0 = 1.0 g L−1, [H2O2]0 = 200 mg L−1, [RB]0 = 10 mg L−1. It proved to be very active under natural sunlight in the photo-Fenton system. It was possible to regenerate it and use it in five Fenton reaction cycles, demonstrating its stability and the quality of niobium as support.Please confirm if all the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Also, kindly confirm the details in the metadata are correct.The names are correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nair KS, Manu B, Azhoni A (2021) Sustainable treatment of paint industry wastewater: current techniques and challenges. J Environ Manage 296:113105. https://doi.org/10.1016/J.JENVMAN.2021.113105

    Article  Google Scholar 

  2. Quiton KGN, Lu MC, Huang YH (2021) Synthesis and catalytic utilization of bimetallic systems for wastewater remediation: a review. Chemosphere 262:128371. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128371

    Article  CAS  PubMed  Google Scholar 

  3. Bilal M, Barceló D, Iqbal HMN (2021) Occurrence, environmental fate, ecological issues, and redefining of endocrine disruptive estrogens in water resources. Sci Total Environ 800:149635. https://doi.org/10.1016/J.SCITOTENV.2021.149635

    Article  CAS  PubMed  Google Scholar 

  4. Liang S, Han J, Yuxuan Z et al (2021) Facile synthesis of copper-based bimetallic oxides for efficient removal of bisphenol a via Fenton-like degradation. Sep Purif Technol 279:119724. https://doi.org/10.1016/J.SEPPUR.2021.119724

    Article  CAS  Google Scholar 

  5. Zhu R, Zhu Y, Xian H et al (2020) CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: The important role of CNTs in accelerating Fe(III)/Fe(II) cycling. Appl Catal B Environ 270:118891. https://doi.org/10.1016/J.APCATB.2020.118891

    Article  CAS  Google Scholar 

  6. Lai C, Shi X, Li L et al (2021) Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review. Sci Total Environ 775:145850. https://doi.org/10.1016/J.SCITOTENV.2021.145850

    Article  CAS  PubMed  Google Scholar 

  7. Nie X, Li G, Li S et al (2022) Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters. Appl Catal B Environ 300:120734. https://doi.org/10.1016/J.APCATB.2021.120734

    Article  CAS  Google Scholar 

  8. Farhadian N, Liu S, Asadi A et al (2021) Enhanced heterogeneous Fenton oxidation of organic pollutant via Fe-containing mesoporous silica composites: a review. J Mol Liq 321:114896. https://doi.org/10.1016/J.MOLLIQ.2020.114896

    Article  CAS  Google Scholar 

  9. Zhang Q, Wang Q, Wang S (2020) Efficient heterogeneous Fenton-like catalysis of Fe-doped SAPO-44 zeolite synthesized from bauxite and rice husk. Chem Phys Lett 753:137598. https://doi.org/10.1016/J.CPLETT.2020.137598

    Article  CAS  Google Scholar 

  10. Phan TTN, Nikoloski AN, Bahri PA, Li D (2019) Enhanced removal of organic using LaFeO3-integrated modified natural zeolites via heterogeneous visible light photo-Fenton degradation. J Environ Manage 233:471–480. https://doi.org/10.1016/J.JENVMAN.2018.12.051

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez-Olmos R, Martin MJ, Georgi A et al (2012) Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Appl Catal B Environ 125:51–58. https://doi.org/10.1016/J.APCATB.2012.05.022

    Article  CAS  Google Scholar 

  12. Liu X, Yin H, Lin A, Guo Z (2017) Effective removal of phenol by using activated carbon supported iron prepared under microwave irradiation as a reusable heterogeneous Fenton-like catalyst. J Environ Chem Eng 5:870–876. https://doi.org/10.1016/J.JECE.2017.01.010

    Article  CAS  Google Scholar 

  13. Fontecha-Cámara MA, Álvarez-Merino MA, Carrasco-Marín F et al (2011) Heterogeneous and homogeneous Fenton processes using activated carbon for the removal of the herbicide amitrole from water. Appl Catal B Environ 101:425–430. https://doi.org/10.1016/J.APCATB.2010.10.012

    Article  Google Scholar 

  14. Lan H, Wang A, Liu R et al (2015) Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. J Hazard Mater 285:167–172. https://doi.org/10.1016/J.JHAZMAT.2014.10.057

    Article  CAS  PubMed  Google Scholar 

  15. Yang N, Liu Y, Zhu J et al (2020) Study on the efficacy and mechanism of Fe-TiO2 visible heterogeneous Fenton catalytic degradation of atrazine. Chemosphere 252:126333. https://doi.org/10.1016/J.CHEMOSPHERE.2020.126333

    Article  CAS  PubMed  Google Scholar 

  16. Hassan ME, Chen Y, Liu G et al (2016) Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light. J Water Process Eng 12:52–57. https://doi.org/10.1016/J.JWPE.2016.05.014

    Article  Google Scholar 

  17. Liu Q, Zhou L, Liu L et al (2020) Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol. Compos Part B Eng 200:108345. https://doi.org/10.1016/J.COMPOSITESB.2020.108345

    Article  CAS  Google Scholar 

  18. Wang X, Jin H, Wu D et al (2020) Fe3O4@S-doped ZnO: a magnetic, recoverable, and reusable Fenton-like catalyst for efficient degradation of ofloxacin under alkaline conditions. Environ Res 186:109626. https://doi.org/10.1016/J.ENVRES.2020.109626

    Article  CAS  PubMed  Google Scholar 

  19. Silva IFB, Martins AR, Krambrock K et al (2020) Understanding photocatalytic activity and mechanism of nickel-modified niobium mesoporous nanomaterials. J Photochem Photobiol A Chem 388:112168. https://doi.org/10.1016/J.JPHOTOCHEM.2019.112168

    Article  Google Scholar 

  20. Nowak I, Ziolek M (1999) Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem Rev 99:3603–3624. https://doi.org/10.1021/cr9800208

    Article  CAS  PubMed  Google Scholar 

  21. Dos Santos AJ, Batista LMB, Martínez-Huitle CA et al (2019) Niobium oxide catalysts as emerging material for textile wastewater reuse: photocatalytic decolorization of azo dyes. Catalysts 9:1070. https://doi.org/10.3390/catal9121070

    Article  CAS  Google Scholar 

  22. Rahim Pouran S, Abdul Aziz AR, Wan Daud WMA, Embong Z (2015) Niobium substituted magnetite as a strong heterogeneous Fenton catalyst for wastewater treatment. Appl Surf Sci 351:175–187. https://doi.org/10.1016/J.APSUSC.2015.05.131

    Article  CAS  Google Scholar 

  23. Tong C, Jing L, He M et al (2021) Construction of dual ion (Fe3+/Fe2+ and Nb5+/Nb4+) synergy and full spectrum 1D nanorod Fe2O3/NaNbO3 photo-Fenton catalyst for the degradation of antibiotic: Effects of H2O2, S2O82− and toxicity. Sep Purif Technol 261:118269. https://doi.org/10.1016/J.SEPPUR.2020.118269

    Article  CAS  Google Scholar 

  24. Silva AC, Oliveira DQL, Oliveira LCA et al (2009) Nb-containing hematites Fe2−xNbxO3: the role of Nb5+ on the reactivity in presence of the H2O2 or ultraviolet light. Appl Catal A Gen 357:79–84. https://doi.org/10.1016/J.APCATA.2009.01.014

    Article  CAS  Google Scholar 

  25. Brasileiro ILO, Madeira VS, de Souza CP et al (2020) α-Fe2O3/Nb2O5 mixed oxide active for the photodegradation of organic contaminant in water: factorial experimental design application and reaction mechanism investigation. J Photochem Photobiol A Chem 388:112199. https://doi.org/10.1016/J.JPHOTOCHEM.2019.112199

    Article  Google Scholar 

  26. Ferreira JDS, Dos Santos TS, Souza MODG, Martins AR (2021) Synthesis, characterization and evaluation of iron oxides and niobium in the removal of dyes in Fenton type reactions and photocatalysis. Sci Plena 16:1–13. https://doi.org/10.14808/sci.plena.2020.127201

    Article  CAS  Google Scholar 

  27. Rezende CC, Neto JL, Silva AC et al (2012) Synthesis and characterization of iron/niobium composites: catalyst for dye wastewater treatments. Catal Commun 26:209–213. https://doi.org/10.1016/j.catcom.2012.06.006

    Article  CAS  Google Scholar 

  28. Oliveira LCA, Gonçalves M, Guerreiro MC et al (2007) A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Appl Catal A Gen 316:117–124. https://doi.org/10.1016/J.APCATA.2006.09.027

    Article  CAS  Google Scholar 

  29. Nguyen TB, Di DC, Huang CP et al (2020) Fe–Cu bimetallic catalyst for the degradation of hazardous organic chemicals exemplified by methylene blue in Fenton-like reaction. J Environ Chem Eng 8:104139. https://doi.org/10.1016/J.JECE.2020.104139

    Article  CAS  Google Scholar 

  30. Mansoori S, Davarnejad R, Ozumchelouei EJ, Ismail AF (2021) Activated biochar supported iron-copper oxide bimetallic catalyst for degradation of ciprofloxacin via photo-assisted electro-Fenton process: a mild pH condition. J Water Process Eng 39:101888. https://doi.org/10.1016/J.JWPE.2020.101888

    Article  Google Scholar 

  31. Nascimento MA, Cruz JC, Rodrigues GD et al (2018) Synthesis of polymetallic nanoparticles from spent lithium-ion batteries and application in the removal of reactive blue 4 dye. J Clean Prod 202:264–272. https://doi.org/10.1016/J.JCLEPRO.2018.08.118

    Article  CAS  Google Scholar 

  32. Bouaziz F, Koubaa M, Kallel F et al (2015) Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions. Ind Crops Prod 74:903–911. https://doi.org/10.1016/J.INDCROP.2015.06.007

    Article  CAS  Google Scholar 

  33. Zhang J, Yan M, Sun G et al (2022) Visible-light photo-Fenton catalytic MgFe2O4 spinel: reaction sintering synthesis and DFT study. J Alloys Compd 889:161673. https://doi.org/10.1016/J.JALLCOM.2021.161673

    Article  CAS  Google Scholar 

  34. Padovan RN, de Carvalho LS, de Souza Bergo PL et al (2021) Degradation of hormones in tap water by heterogeneous solar TiO2-photocatalysis: optimization, degradation products identification, and estrogenic activity removal. J Environ Chem Eng 9:106442. https://doi.org/10.1016/J.JECE.2021.106442

    Article  CAS  Google Scholar 

  35. Kang S, Miao R, Guo J, Fu J (2021) Sustainable production of fuels and chemicals from biomass over niobium based catalysts: a review. Catal Today 374:61–76. https://doi.org/10.1016/j.cattod.2020.10.029

    Article  CAS  Google Scholar 

  36. Fidelis MZ, Abreu E, Dos Santos OAA et al (2019) Experimental design and optimization of triclosan and 2.8-diclorodibenzeno-p-dioxina degradation by the Fe/Nb2O5/UV system. Catalysts 9:1–18. https://doi.org/10.3390/catal9040343

    Article  CAS  Google Scholar 

  37. Josué TG, Almeida LNB, Lopes MF et al (2020) Cr (VI) reduction by photocatalyic process: Nb2O5 an alternative catalyst. J Environ Manage. https://doi.org/10.1016/j.jenvman.2020.110711

    Article  PubMed  Google Scholar 

  38. Khatoon R, Guo Y, Attique S et al (2020) Facile synthesis of α-Fe2O3/Nb2O5 heterostructure for advanced Li-ion batteries. J Alloys Compd 837:155294. https://doi.org/10.1016/j.jallcom.2020.155294

    Article  CAS  Google Scholar 

  39. Filho JBG, Rios RDF, Bruziquesi CGO et al (2021) A promising approach to transform levulinic acid into γ-valerolactone using niobic acid photocatalyst and the accumulated electron transfer technique. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2020.119814

    Article  Google Scholar 

  40. Ramanjaneya Reddy G, Chennakesavulu K (2014) Synthesis and characterization of Nb2O5 supported Pd(II)@SBA15: catalytic activity towards oxidation of benzhydrol and Rhodamine-B. J Mol Struct 1075:406–412. https://doi.org/10.1016/j.molstruc.2014.06.090

    Article  CAS  Google Scholar 

  41. Jehng J-M, Wachs IE (1991) Structural chemistry and Raman spectra of niobium oxides. Chem Mater 3:100–107

    Article  CAS  Google Scholar 

  42. Chandrasekaran S, Li N, Zhuang Y et al (2022) Interface charge density modulation of a lamellar-like spatially separated Ni9S8 nanosheet/Nb2O5 nanobelt heterostructure catalyst coupled with nitrogen and metal (M = Co, Fe, or Cu) atoms to accelerate acidic and alkaline hydrogen evolution reactions. Chem Eng J 431:134073. https://doi.org/10.1016/j.cej.2021.134073

    Article  CAS  Google Scholar 

  43. Elbatal HA, Abdelghany AM, Ali IS (2012) Optical and FTIR studies of CuO-doped lead borate glasses and effect of gamma irradiation. J Non Cryst Solids 358:820–825. https://doi.org/10.1016/j.jnoncrysol.2011.12.069

    Article  CAS  Google Scholar 

  44. Ding Y, Ezekoye OA, Lu S, Wang C (2016) Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers Manag 120:370–377. https://doi.org/10.1016/j.enconman.2016.05.007

    Article  CAS  Google Scholar 

  45. Sun H, Bi H, Jiang C et al (2022) Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: synergistic effect, pyrolysis kinetics and gas products. Renew Energy 184:1–14. https://doi.org/10.1016/j.renene.2021.11.049

    Article  CAS  Google Scholar 

  46. De Oliveira CF, De Carvalho MW, Oliveira LCA et al (2010) Utilization of Sn/Nb2O5 composite for the removal of methylene blue. Quim Nova 33:528–531. https://doi.org/10.1590/s0100-40422010000300007

    Article  Google Scholar 

  47. Dancini-Pontes I, DeSouza M, Silva FA et al (2015) Influence of the CeO2 and Nb2O5 supports and the inert gas in ethanol steam reforming for H2 production. Chem Eng J 273:66–74. https://doi.org/10.1016/j.cej.2015.03.032

    Article  CAS  Google Scholar 

  48. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  49. Castañeda-Juárez M, Martínez-Miranda V, Almazán-Sánchez PT et al (2019) Synthesis of TiO2 catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemical-thermal method for the degradation of diclofenac by heterogeneous photocatalysis. J Photochem Photobiol A Chem 380:111834. https://doi.org/10.1016/J.JPHOTOCHEM.2019.04.045

    Article  Google Scholar 

  50. Garrido-Ramírez EG, Marco JF, Escalona N, Ureta-Zañartu MS (2016) Preparation and characterization of bimetallic Fe–Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction. Microporous Mesoporous Mater 225:303–311. https://doi.org/10.1016/J.MICROMESO.2016.01.013

    Article  Google Scholar 

  51. Lam FLY, Hu X (2013) PH-insensitive bimetallic catalyst for the abatement of dye pollutants by photo-Fenton oxidation. Ind Eng Chem Res 52:6639–6646. https://doi.org/10.1021/ie302864e

    Article  CAS  Google Scholar 

  52. Wang Y, Zhao H, Zhao G (2015) Iron–copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants. Appl Catal B Environ 164:396–406. https://doi.org/10.1016/J.APCATB.2014.09.047

    Article  CAS  Google Scholar 

  53. Manickam-Periyaraman P, Espinosa JC, Ferrer B et al (2020) Bimetallic iron-copper oxide nanoparticles supported on nanometric diamond as efficient and stable sunlight-assisted Fenton photocatalyst. Chem Eng J 393:124770. https://doi.org/10.1016/J.CEJ.2020.124770

    Article  CAS  Google Scholar 

  54. Karthikeyan S, Titus A, Gnanamani A et al (2011) Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination 281:438–445. https://doi.org/10.1016/J.DESAL.2011.08.019

    Article  CAS  Google Scholar 

  55. Shi X, Tian A, You J et al (2018) Degradation of organic dyes by a new heterogeneous Fenton reagent: Fe2GeS4 nanoparticle. J Hazard Mater 353:182–189. https://doi.org/10.1016/J.JHAZMAT.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  56. Saleh M, Bilici Z, Kaya M et al (2021) The use of basalt powder as a natural heterogeneous catalyst in the Fenton and photo-Fenton oxidation of cationic dyes. Adv Powder Technol 32:1264–1275. https://doi.org/10.1016/J.APT.2021.02.025

    Article  CAS  Google Scholar 

  57. Hassan AK, Al-Kindi GY, Ghanim D (2020) Green synthesis of bentonite-supported iron nanoparticles as a heterogeneous Fenton-like catalyst: kinetics of decolorization of reactive blue 238 dye. Water Sci Eng 13:286–298. https://doi.org/10.1016/j.wse.2020.12.001

    Article  Google Scholar 

  58. Qin H, Yang Y, Shi W et al (2021) Heterogeneous Fenton degradation of azithromycin antibiotic in water catalyzed by amino/thiol-functionalized MnFe2O4 magnetic nanocatalysts. J Environ Chem Eng 9:106184. https://doi.org/10.1016/j.jece.2021.106184

    Article  CAS  Google Scholar 

  59. Basturk E, Karatas M (2014) Advanced oxidation of reactive blue 181 solution: a comparison between Fenton and sono-Fenton process. Ultrason Sonochem 21:1881–1885. https://doi.org/10.1016/j.ultsonch.2014.03.026

    Article  CAS  PubMed  Google Scholar 

  60. Özdemir C, Öden MK, Şahinkaya S, Güçlü D (2011) The sonochemical decolorisation of textile azo dye CI reactive orange 127. Color Technol 127:268–273. https://doi.org/10.1111/j.1478-4408.2011.00310.x

    Article  CAS  Google Scholar 

  61. Aksu Z, Ertuǧrul S, Dönmez G (2009) Single and binary chromium(VI) and Remazol Black B biosorption properties of Phormidium sp. J Hazard Mater 168:310–318. https://doi.org/10.1016/J.JHAZMAT.2009.02.027

    Article  CAS  PubMed  Google Scholar 

  62. Zhang B, Hou Y, Yu Z et al (2019) Three-dimensional electro-Fenton degradation of rhodamine B with efficient Fe–Cu/kaolin particle electrodes: electrodes optimization, kinetics, influencing factors and mechanism. Sep Purif Technol 210:60–68. https://doi.org/10.1016/j.seppur.2018.07.084

    Article  CAS  Google Scholar 

  63. Rahim Pouran S, Abdul Raman AA, Wan Daud WMA (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35. https://doi.org/10.1016/J.JCLEPRO.2013.09.013

    Article  CAS  Google Scholar 

  64. Ahile UJ, Wuana RA, Itodo AU et al (2020) A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: current trends, knowledge gap and future studies. Sci Total Environ 710:134872. https://doi.org/10.1016/J.SCITOTENV.2019.134872

    Article  CAS  PubMed  Google Scholar 

  65. Yener HB, Yılmaz M, Deliismail O et al (2017) Clinoptilolite supported rutile TiO2 composites: synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid. Sep Purif Technol 173:17–26. https://doi.org/10.1016/j.seppur.2016.09.010

    Article  CAS  Google Scholar 

  66. Nezamzadeh-Ejhieh A, Hushmandrad S (2010) Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl Catal A Gen 388:149–159. https://doi.org/10.1016/j.apcata.2010.08.042

    Article  CAS  Google Scholar 

  67. Nguyen DTC, Le HTN, Nguyen TT et al (2021) Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. J Hazard Mater 420:126586. https://doi.org/10.1016/j.jhazmat.2021.126586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq) [Proc. 159371/2019-8]. Fundação Araucária (FA-PR) for the RENEWABLE HYDROCARBONET (NAPI-HCR) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Picoli Nippes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nippes, R.P., Macruz, P.D., Gomes, A.D. et al. Removal of reactive blue 250 dye from aqueous medium using Cu/Fe catalyst supported on Nb2O5 through oxidation with H2O2. Reac Kinet Mech Cat 135, 2697–2717 (2022). https://doi.org/10.1007/s11144-022-02279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02279-7

Keywords

Navigation