Skip to main content
Log in

Kinetic study of ethyl ester transesterification using a hybrid silica catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

CTA-MCM-41 hybrid silica was prepared using a 40 °C non hydrothermal method for 2 h and was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. Using these techniques was possible to confirm the structural organization with a highly organized hexagonal matrix of the MCM-41 type, quantify the presence of hexadecyltrimethylammonium cations present in the pores of silica and, consequently, to measure the concentration of the catalytic sites present in the material, 1.83 mmol g−1. This catalyst was used in the transesterification of the esters with the aim of determining the influence of the length of the ester side-chain on the reaction kinetics. The ethyl esters tested had the length of the ester side-chain in the range 1–4 carbons. The catalytic tests were performed at temperatures ranging from 20 to 50 °C, employing a methanol/ester molar ratio of 6:1 and 4% of catalyst relative to the total reactants mass. Conversion close to 80% was observed for the ethyl acetate at 40 °C and decreased as the length of the ester side-chain increased. Fitting using a pseudo-homogeneous reversible first order model enabled determination of the kinetic parameters for each reaction with activation energies between 41.3 and 48.3 kJ mol−1. Inductive and diffusional effects explain the slower reaction rate and higher activation energy as the size of the molecule increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu W, Gao L, Wang S, Xiao G (2014) Biodiesel production in a membrane reactor using MCM-41 supported solid acid catalyst. Bioresour Technol 159:286–291. https://doi.org/10.1016/j.biortech.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  2. Chua SY, Periasamy LA, Goh CMH et al (2019) Biodiesel synthesis using natural solid catalyst derived from biomass waste: a review. J Ind Eng Chem 80:1–78. https://doi.org/10.1016/j.jiec.2019.09.022

    Article  CAS  Google Scholar 

  3. Gómez JM, Romero MD, Callejo V (2013) Heterogeneous basic catalysis for upgrading of biofuels. Catal Today 218:143–147. https://doi.org/10.1016/j.cattod.2013.04.027

    Article  CAS  Google Scholar 

  4. Lima AL, Ronconi CM, Mota CJA (2016) Heterogeneous basic catalysts for biodiesel production. Catal Sci Technol 6:2877–2891. https://doi.org/10.1039/C5CY01989C

    Article  CAS  Google Scholar 

  5. Martins L, Bonagamba TJ, de Azevedo ER et al (2006) Surfactant containing Si-MCM-41: An efficient basic catalyst for the Knoevenagel condensation. Appl Catal A Gen 312:77–85. https://doi.org/10.1016/j.apcata.2006.06.035

    Article  CAS  Google Scholar 

  6. Kubota Y, Nishizaki Y, Ikeya H et al (2004) Organic—silicate hybrid catalysts based on various defined structures for Knoevenagel condensation. Microporous Mesoporous Mater 70:135–149

    Article  CAS  Google Scholar 

  7. Alkimim IP, Silva LL, Cardoso D (2017) Synthesis of hybrid spherical silicas and application in catalytic transesterification reaction. Microporous Mesoporous Mater 254:37–44. https://doi.org/10.1016/j.micromeso.2017.04.018

    Article  CAS  Google Scholar 

  8. Dossin TF, Reyniers MF, Marin GB (2006) Kinetics of heterogeneously MgO-catalyzed transesterification. Appl Catal B 62:35–45. https://doi.org/10.1016/j.apcatb.2005.04.005

    Article  CAS  Google Scholar 

  9. Peng Y, Cui X, Zhang Y et al (2013) Kinetic study of transesterification of methyl acetate with ethanol catalyzed by 4-(3-methyl-1-imidazolio)-1-butanesulfonic acid triflate. Appl Catal A Gen 466:131–136. https://doi.org/10.1016/j.apcata.2013.06.048

    Article  CAS  Google Scholar 

  10. Darnoko D, Cheryan M (2000) Kinetics of palm oil transesterification in a batch reactor. JAOCS 77:1263–1267. https://doi.org/10.1007/s11746-000-0198-y

    Article  CAS  Google Scholar 

  11. Reyero I, Arzamendi G, Zabala S, Gandía LM (2015) Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Process Technol 129:147–155. https://doi.org/10.1016/j.fuproc.2014.09.008

    Article  CAS  Google Scholar 

  12. Van de Steene E, De Clercq J, Thybaut JW (2014) Ion-exchange resin catalyzed transesterification of ethyl acetate with methanol: Gel versus macroporous resins. Chem Eng J 242:170–179. https://doi.org/10.1016/j.cej.2013.12.025

    Article  CAS  Google Scholar 

  13. Ali SH, Al-Rashed O, Azeez FA, Merchant SQ (2011) Potential biofuel additive from renewable sources - Kinetic study of formation of butyl acetate by heterogeneously catalyzed transesterification of ethyl acetate with butanol. Bioresour Technol 102:10094–10103. https://doi.org/10.1016/j.biortech.2011.08.033

    Article  CAS  PubMed  Google Scholar 

  14. Xu B, Zhang W, Xuemei Z, Zhou C (2008) Kinetic study of transesterification of methyl acetate with n-butanol catalyzed by NKC-9. Int J Chem Kinet 43:101–106. https://doi.org/10.1002/kin

    Article  Google Scholar 

  15. Araújo JA, Cruz FT, Cruz IH, Cardoso D (2013) Encapsulation of polymers in CTA-MCM-41 via microemulsion. Microporous Mesoporous Mater 180:14–21. https://doi.org/10.1016/j.micromeso.2013.05.010

    Article  CAS  Google Scholar 

  16. Berrios M, Siles J, Martı MA, Martı A (2007) A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 86:2383–2388. https://doi.org/10.1016/j.fuel.2007.02.002

    Article  CAS  Google Scholar 

  17. Kumar D, Schumacher K, Von HCF et al (2001) MCM-41, MCM-48 and related mesoporous adsorbents : their synthesis and characterisation. Colloids Surfaces A 188:109–116

    Article  Google Scholar 

  18. Selvam P, Bhatia SK, Sonwane CG (2001) Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Ind Eng Chem Res 40:3237–3261. https://doi.org/10.1021/ie0010666

    Article  CAS  Google Scholar 

  19. Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125:170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

    Article  CAS  Google Scholar 

  20. Meléndez-Ortiz HI, Mercado-silva A, García-cerda LA et al (2013) Hydrothermal Synthesis of Mesoporous Silica MCM-41 Using Commercial Sodium Silicate. J Mex Chem Soc 57:73–79

    Google Scholar 

  21. Zhao XS, Lu GQ, Whittaker AK et al (1997) Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA. J Phys Chem B 101:6525–6531. https://doi.org/10.1021/jp971366+

    Article  CAS  Google Scholar 

  22. Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 20:611–615. https://doi.org/10.1002/aic.690200329

    Article  CAS  Google Scholar 

  23. Alonso DM, Granados ML, Mariscal R, Douhal A (2009) Polarity of the acid chain of esters and transesterification activity of acid catalysts. J Catal 262:18–26. https://doi.org/10.1016/j.jcat.2008.11.026

    Article  CAS  Google Scholar 

  24. Liu Y, Lotero E, Goodwin JG (2006) Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis. J Catal 243:221–228. https://doi.org/10.1016/j.jcat.2006.07.013

    Article  CAS  Google Scholar 

  25. Bozek-Winkler E, Gmehling J (2006) Transesterification of methyl acetate and n-butanol catalyzed by Amberlyst 15. Ind Eng Chem Res 45:6648–6654. https://doi.org/10.1021/ie060536e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the following Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant #132824/2018-3 and Grant #141307/2018-8) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, #001). The authors thank the Structural Characterization Laboratory of UFSCar (LCE/DEMa/UFSCar) for the microscopy analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilson Cardoso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 535 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, L.N.R., de Paula, G.M. & Cardoso, D. Kinetic study of ethyl ester transesterification using a hybrid silica catalyst. Reac Kinet Mech Cat 135, 2427–2439 (2022). https://doi.org/10.1007/s11144-022-02258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02258-y

Keywords

Navigation