Skip to main content
Log in

Catalytic decomposition of H2O2 over Nb/KIT-6 catalyst for environmental applications

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, it is aimed to investigate catalytic decomposition of hydrogen peroxide for oxygen generation for a fuel-cell based air independent hydrogen production system in underwater applications for our following studies. O2 and water were generated after H2O2 was decomposed catalytically. Here, H2O2 acts as an oxidizer and pure O2 is fed on to a fuel cell and the water is used for hydrolysis reaction of sodium borohydride for clean H2 production. Due to these reasons, H2O2 was selected as an oxygen source concurrently. H2O2 is an environmentally friendly chemical because of its decomposition by-product is only water. The prepared Nb based KIT-6 silica catalysts showed high catalytic activities for the H2O2 decomposition. These catalysts were characterized by SEM, SEM–EDX, FT-IR, ICP-OES, TEM, N2 adsorption–desorption and XRD analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lv Y, Xin Z, Meng X, Tao M, Bian Z, Gu J, Gao W (2017) Effect of La, Mg and Mo additives on dispersion and thermostability of Ni species on KIT-6 for CO methanation. Appl Catal A 543:125–132

    Article  CAS  Google Scholar 

  2. Bérubé F, Kaliaguine S (2008) Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous Mesoporous Mater 115(3):469–479

    Article  CAS  Google Scholar 

  3. Mandal M, Kruk M (2012) Surfactant-templated synthesis of ordered silicas with closed cylindrical mesopores. Chem Mater 24(1):149–154

    Article  CAS  Google Scholar 

  4. Kishor R, Ghoshal AK (2017) Understanding the hydrothermal, thermal, mechanical and hydrolytic stability of mesoporous KIT-6: a comprehensive study. Microporous Mesoporous Mater 242:127–135

    Article  CAS  Google Scholar 

  5. Vinu A, Gokulakrishnan N, Balasubramanian VV, Alam S, Kapoor MP, Ariga K, Mori T (2008) Three‐dimensional ultralarge‐pore Ia3d mesoporous silica with various pore diameters and their application in biomolecule immobilization. Chem A Eur J 14(36):11529–11538

    Article  CAS  Google Scholar 

  6. Wu S, Lan P (2012) A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst. AlChE J 58:1570–1577

    Article  CAS  Google Scholar 

  7. Broda M, Kierzkowska AM, Baudouin D et al (2012) Sorbent-enhanced methane reforming over a Ni-Ca based, bifunctional catalyst sorbent. ACS Catal 2:1635–1646

    Article  CAS  Google Scholar 

  8. Zhang J, Xin Z, Meng X, Lv Y, Tao M (2014) Effect of MoO3 on the heat resistant performances of nickel based MCM-41 methanation catalysts. Fuel 116:25–33

    Article  CAS  Google Scholar 

  9. Bian Z, Meng X, Tao M, Lv Y, Xin Z (2016) Uniform Ni particles on amino-functionalized SBA-16 with excellent activity and stability for syngas methanation. J Mol Catal A Chem 417:184–191

    Article  CAS  Google Scholar 

  10. García-Sancho C, Moreno-Tost R, Mérida-Robles JM, Santamaría-González J, Jiménez-López A, Maireles-Torres P (2011) Niobium-containing MCM-41 silica catalysts for biodiesel production. Appl Catal B 108:161–167

    Article  CAS  Google Scholar 

  11. Anilkumar M, Hoelderich WF (2015) A one step synthesis ofcaprolactam out of cyclohexanone by combinded ammoximation and Beckmann rearrangement over Nb-MCM-41 catalysts. Appl Catal B 165:87–93

    Article  CAS  Google Scholar 

  12. Gudarzi D, Ratchananusorn W, Turunen I, Heinonen M (2015) Factors affecting catalytic destruction of H2O2 by hydrogenation and decomposition over Pd catalysts supported on activated carbon cloth (ACC). Catal Today 248:69–79

    Article  CAS  Google Scholar 

  13. Wang Y, Guo Z, Xia Y (2013) A thin-film direct hydrogen peroxide/borohydride micro fuel cell. Adv Energy Mater 3(6):713–717

    Article  CAS  Google Scholar 

  14. Zaki MI, Katrib A, Muftah AI, Jagadale TC, Ikram M, Ogale SB (2013) Exploring anatase-TiO2 doped dilutely with transition metal ions as nano-catalyst for H2O2 decomposition: Spectroscopic and kinetic studies. Appl Catal A 452:214–221

    Article  CAS  Google Scholar 

  15. Amirfakhri SJ, Binny D, Meunier JL, Berk D (2014) Investigation of hydrogen peroxide reduction reaction on graphene and nitrogen doped graphene nanoflakes in neutral solution. J Power Sources 257:356–363

    Article  CAS  Google Scholar 

  16. Yi Y, Wang L, Li G, Guo H (2016) A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catal Sci Technol 6(6):1593–1610

    Article  CAS  Google Scholar 

  17. Mase K, Yoneda M, Yamada Y, Fukuzumi S (2016) Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat Commun 7(1):1–7

    Article  CAS  Google Scholar 

  18. Moon GH, Fujitsuka M, Kim S, Majima T, Wang X, Choi W (2017) Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal 7(4):2886–2895

    Article  CAS  Google Scholar 

  19. Kim HI, Kwon OS, Kim S, Choi W, Kim JH (2016) Harnessing low energy photons (635nm) for the production of H2O2 using up conversion nanohybrid photocatalysts. Energy Environ Sci 9(3):1063–1073

    Article  CAS  Google Scholar 

  20. Shiraishi Y, Kofuji Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T (2015) Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal 5(5):3058–3066

    Article  CAS  Google Scholar 

  21. Song H, Wei L, Chen C, Wen C, Han F (2019) Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets. J Catal 376:198–208

    Article  CAS  Google Scholar 

  22. Liu X, Zhu T, Lv Q, Li Y, Che D (2019) Simultaneous removal of NOx and SO2 from coal-fired flue gas based on the catalytic decomposition of H2O2 over Fe2(MoO4)3. Chem Eng J 371:486–499

    Article  CAS  Google Scholar 

  23. Qi Y, Ge P, Wang M, Shan X, Ma R, Huang J, Wu J (2020) Experimental investigation and numerical simulation of simultaneous desulfurization and denitrification by H2O2 solution assisted with microwave and additive. Chem Eng J 391:123559

    Article  CAS  Google Scholar 

  24. Yang B, Ma S, Cui R, Sun S, Wang J, Li S (2019) Simultaneous removal of NOx and SO2 with H2O2 catalyzed by alkali/magnetism-modified fly ash: high efficiency, low cost and catalytic mechanism. Chem Eng J 359:233–243

    Article  CAS  Google Scholar 

  25. Anilkumar M, Hoelderich WF (2012) Gas phase Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam over mesoporous, microporous and amorphous Nb2O5/silica catalysts: a comparative study. Catal Today 198(1):289–299

    Article  CAS  Google Scholar 

  26. Yan W, Ramanathan A, Patel PD, Maiti SK, Laird BB, Thompson WH, Subramaniam B (2016) Mechanistic insights for enhancing activity and stability of Nb-incorporated silicates for selective ethylene epoxidation. J Catal 336:75–84

    Article  CAS  Google Scholar 

  27. Thornburg NE, Nauert SL, Thompson AB, Notestein JM (2016) Synthesis−structure–function relationships of silica-supported niobium (V) catalysts for alkene epoxidation with H2O2. ACS Catal 6(9):6124–6134

    Article  CAS  Google Scholar 

  28. Hiroki A, LaVerne JA (2005) Decomposition of hydrogen peroxide at water− ceramic oxide interfaces. J Phys Chem B 109(8):3364–3370

    Article  CAS  PubMed  Google Scholar 

  29. Dong C, Ji J, Shen B, Xing M, Zhang J (2018) Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr (VI) and remediation of phenol. Environ Sci Technol 52(19):11297–11308

    Article  CAS  PubMed  Google Scholar 

  30. Ma C, Feng S, Zhou J, Chen R, Wei Y, Liu H, Wang S (2019) Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue. Appl Catal B 259:118015

    Article  CAS  Google Scholar 

  31. Gunduz-Meric G (2021) Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniv Fen ve Mühendis Bilim Derg 2021(2):442–448

    Google Scholar 

  32. Gunduz G, Degirmenci L (2016) Silika ile Mikroenkapsüle Edilmiş Fe2O3 İçerikli Kürelerin Üretim Prosesinin İyileştirilmesi ve Katalitik Aktivitelerinin Belirlenmesi. Gazi Üniv Mühendis Mimar Fakültesi Derg. https://doi.org/10.17341/gummfd.84263

    Article  Google Scholar 

  33. Ali N, Zaman H, Bilal M, Nazir MS, Iqbal HM (2019) Environmental perspectives of interfacially active and magnetically recoverable composite materials—a review. Sci Total Environ 670:523–538

    Article  CAS  PubMed  Google Scholar 

  34. Ji X, Han Z, Li J, Deng Y, Han X, Zhao J et al (2019) MoSx co-catalytic activation of H2O2 by heterogeneous hemin catalyst under visible light irradiation. J Colloid Interface Sci 557:301–310

    Article  CAS  PubMed  Google Scholar 

  35. Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y et al (2018) Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4(6):1359–1372

    Article  CAS  Google Scholar 

  36. Luo H, Cheng Y, Zeng Y, Luo K, Pan X (2020) Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants. Sci Total Environ 732:139335

    Article  CAS  PubMed  Google Scholar 

  37. Spear EB (1908) Catalytic decomposition of hydrogen peroxide under high pressures of oxygen. 2. J Am Chem Soc 30(2):195–209

    Article  CAS  Google Scholar 

  38. Satterfield C, Stein T (1957) Decomposition of hydrogen peroxide vapor on relatively inert surfaces. Ind Eng Chem 49(7):1173–1180

    Article  CAS  Google Scholar 

  39. Park T, Chang I, Jung JH, Lee HB, Ko SH, O’Hayre R et al (2017) Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector. Energy 134:412–419

    Article  CAS  Google Scholar 

  40. Kim T (2009) Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell. Int J Hydrogen Energy 34(16):6790–6798

    Article  CAS  Google Scholar 

  41. Joh HI, Ha TJ, Hwang SY, Kim JH, Chae SH, Cho JH et al (2010) A direct methanol fuel cell system to power a humanoid robot. J Power Sources 195(1):293–298

    Article  CAS  Google Scholar 

  42. Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. J Am Chem Soc 75(1):215–219

    Article  CAS  Google Scholar 

  43. He Q, Shi J, Cui X, Zhao J, Chen Y, Zhou J (2009) Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features. J Mater Chem 19(21):3395–3403

    Article  CAS  Google Scholar 

  44. Kim TW, Kleitz F, Paul B, Ryoo R (2005) MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer− butanol−water system. J Am Chem Soc 127(20):7601–7610

    Article  CAS  PubMed  Google Scholar 

  45. Park DH, Kim SS, Pinnavaia TJ, Tzompantzi F, Prince J, Valente JS (2011) Selective isobutene oligomerization by mesoporous MSU-SBEA catalysts. J Phys Chem C 115(13):5809–5816

    Article  CAS  Google Scholar 

  46. Shen S, Chen J, Koodali RT, Hu Y, Xiao Q, Zhou J et al (2014) Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production. Appl Catal B 150:138–146

    Article  CAS  Google Scholar 

  47. Prathap MA, Kaur B, Srivastava R (2012) Direct synthesis of metal oxide incorporated mesoporous SBA-15, and their applications in non-enzymatic sensing of glucose. J Colloid Interface Sci 381(1):143–151

    Article  CAS  Google Scholar 

  48. Pirez C, Caderon JM, Dacquin JP, Lee AF, Wilson K (2012) Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification. ACS Catal 2(8):1607–1614

    Article  CAS  Google Scholar 

  49. Xia Y, Yang Z, Mokaya R (2004) Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica. J Phys Chem B 108(50):19293–19298

    Article  CAS  Google Scholar 

  50. Argyo C, Weiss V, Bräuchle C, Bein T (2014) Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater 26(1):435–451

    Article  CAS  Google Scholar 

  51. Kong L, Mume E, Triani G, Smith SV (2013) Optimizing radiolabeling amine-functionalized silica nanoparticles using SarAr-NCS for applications in imaging and radiotherapy. Langmuir 29(18):5609–5616

    Article  CAS  PubMed  Google Scholar 

  52. Wang W, Qi R, Shan W, Wang X, Ji Q, Zhao J et al (2014) Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process. Microporous Mesoporous Mater 194:167–173

    Article  CAS  Google Scholar 

  53. Ramanathan A, Subramaniam B, Maheswari R, Hanefeld U (2013) Synthesis and characterization of Zirconium incorporated ultra large pore mesoporous silicate, Zr–KIT-6. Microporous Mesoporous Mater 167:207–212

    Article  CAS  Google Scholar 

  54. Ramanathan A, Maheswari R, Barich DH, Subramaniam B (2014) Niobium incorporated mesoporous silicate, Nb-KIT-6: synthesis and characterization. Microporous Mesoporous Mater 190:240–247

    Article  CAS  Google Scholar 

  55. Ghohe NM, Tayebee R, Amini MM (2019) Synthesis and characterization of mesoporous Nb-Zr/KIT-6 as a productive catalyst for the synthesis of benzylpyrazolyl coumarins. Mater Chem Phys 223:268–276

    Article  CAS  Google Scholar 

  56. Maurya MR, Titinchi SJJ, Chand S, Mishra IM (2002) Zeolite-encapsulated Cr (III), Fe (III), Ni (II), Zn (II) and Bi (III) salpn complexes as catalysts for the decomposition of H2O2 and oxidation of phenol. J Mol Catal A Chem 180(1–2):201–209

    Article  CAS  Google Scholar 

  57. Bermúdez JM, Arenillas A, Menéndez JA (2011) Syngas from CO2 reforming of coke oven gas: synergetic effect of activated carbon/Ni–γAl2O3 catalyst. Int J Hydrogen Energy 36:13361–13368

    Article  CAS  Google Scholar 

  58. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  59. Xu L, Wang C, Guan J (2014) Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction. J Solid State Chem 213:250–255

    Article  CAS  Google Scholar 

  60. Zhang H, Deng X, Jiao C, Lu L, Zhang S (2016) Preparation and catalytic activities for H2O2 decomposition of Rh/Au bimetallic nanoparticles. Mater Res Bull 79:29–35

    Article  CAS  Google Scholar 

  61. Voitko K, Tóth A, Demianenko E, Dobos G, Berke B, Bakalinska O et al (2015) Catalytic performance of carbon nanotubes in H2O2 decomposition: experimental and quantum chemical study. J Colloid Interface Sci 437:283–290

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Li D, Nan Z (2019) Effect of N content in g-C3N4 as metal-free catalyst on H2O2 decomposition for MB degradation. Sep Purif Technol 224:152–162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Bilecik Seyh Edebali University, Yıldız Technical University and Eskisehir Osmangazi University Central Research Laboratories are gratefully acknowledged for characterization studies. Part of the study was supported by the BAP 2019-02.BŞEÜ.03-04 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Gunduz-Meric.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1467 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunduz-Meric, G. Catalytic decomposition of H2O2 over Nb/KIT-6 catalyst for environmental applications. Reac Kinet Mech Cat 135, 2059–2071 (2022). https://doi.org/10.1007/s11144-022-02235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02235-5

Keywords

Navigation