Skip to main content
Log in

Synthesis, characterization and kinetics of sustained pantoprazole release studies of interpenetrated poly(acrylic acid)-chitosan-bentonite hydrogels for drug delivery systems

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Clays are widely used in controlled drug delivery systems due to their strong adsorption properties and natural origin. In this study, a drug carrier was prepared using chitosan, a natural polymer, mixed with bentonite clay. Then, poly(acrylic acid) was added to improve its swelling properties. Pantoprazole was chosen as the model drug. The swelling properties of the prepared samples were investigated at two different temperatures: 25 and 37 °C. The prepared samples were examined by Fourier-transform infrared spectroscopy and scanning electron microscopy. The controlled release of the pantoprazole from the drug carriers indicated that the release of the pantoprazole is temperature-sensitive. In order to study the effect of bentonite on the drug carrier system, drug release was also investigated in the samples without adding clay. It was observed that the drug release profiles of the prepared sample containing bentonite fitted better than the sample without clay. The release kinetics analysis showed that the first-order and the Korsmeyer-Peppas models fit the best, and that pantoprazole was transported via Fickian diffusion. The prepared samples showed the capability of pantoprazole loading and, thus, its possibility to be used in drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yao Y, Zhou Y, Liu L et al (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193. https://doi.org/10.3389/FMOLB.2020.00193/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meyler’s side effects of drugs - 16th Edition. https://www.elsevier.com/books/meylers-side-effects-of-drugs/aronson/978-0-444-53717-1. Accessed 6 Dec 2021

  3. Giacomini KM, Krauss RM, Roden DM et al (2007) When good drugs go bad. Nat. https://doi.org/10.1038/446975a

    Article  Google Scholar 

  4. Odiba A, Ukegbu C, Anunobi O et al (2016) Making drugs safer: Improving drug delivery and reducing the side effect of drugs on the human biochemical system. Nanotechnol Rev 5:183–194. https://doi.org/10.1515/NTREV-2015-0055/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  5. Tryfonidou MA, de Vries G, Hennink WE, Creemers LB (2020) “Old Drugs, New Tricks”—Local controlled drug release systems for treatment of degenerative joint disease. Adv Drug Deliv Rev 160:170–185. https://doi.org/10.1016/J.ADDR.2020.10.012

    Article  CAS  PubMed  Google Scholar 

  6. Li R, Peng F, Cai J et al (2020) Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci 15:311–325. https://doi.org/10.1016/J.AJPS.2019.06.003

    Article  PubMed  Google Scholar 

  7. Rohani Shirvan A, Bashari A, Hemmatinejad N (2019) New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur Polym J 119:541–550. https://doi.org/10.1016/J.EURPOLYMJ.2019.07.010

    Article  CAS  Google Scholar 

  8. Qiu M, Wang D, Liang W et al (2018) Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA 115:501–506. https://doi.org/10.1073/PNAS.1714421115/-/DCSUPPLEMENTAL

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu X, Liu J, Yang L, Wang F (2019) Photothermally controlled drug release system with high dose loading for synergistic chemo-photothermal therapy of multidrug resistance cancer. Colloids Surf B Biointerfaces 175:239–247. https://doi.org/10.1016/J.COLSURFB.2018.11.088

    Article  CAS  PubMed  Google Scholar 

  10. Aroguz AZ, Baysal K, Tasdelen B, Baysal BM (2011) Preparation, characterization, and swelling and drug release properties of a crosslinked chitosan-polycaprolactone gel. J Appl Polym Sci 119:2885–2894. https://doi.org/10.1002/app.33074

    Article  CAS  Google Scholar 

  11. Gref R, Domb A, Quellec P et al (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16:215–233

    Article  CAS  Google Scholar 

  12. Heng PWS (2018) Controlled release drug delivery systems. Pharm Dev Technol 23:833

    Article  CAS  Google Scholar 

  13. Kumar R, Mondal K, Panda PK et al (2020) Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 8:8992–9027

    Article  CAS  Google Scholar 

  14. Amiri M, Khazaeli P, Salehabadi A, Salavati-Niasari M (2021) Hydrogel beads-based nanocomposites in novel drug delivery platforms: recent trends and developments. Adv Colloid Interface Sci 288:102316

    Article  CAS  Google Scholar 

  15. Mottaghitalab F, Farokhi M, Shokrgozar MA et al (2015) Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 206:161–176. https://doi.org/10.1016/J.JCONREL.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  16. Chou SF, Carson D, Woodrow KA (2015) Current strategies for sustaining drug release from electrospun nanofibers. J Control Release 220:584–591. https://doi.org/10.1016/J.JCONREL.2015.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu J, Zhang Z, Gu J et al (2020) Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J Control Release 320:337–346. https://doi.org/10.1016/J.JCONREL.2020.01.020

    Article  CAS  PubMed  Google Scholar 

  18. Mehraz L, Nouri M, Namazi H (2018) Electrospun silk fibroin/β-cyclodextrin citrate nanofibers as a novel biomaterial for application in controlled drug release. Int J Polym Mater Polym Biomater 69:211–221. https://doi.org/10.1080/00914037.2018.1552865

    Article  CAS  Google Scholar 

  19. Goyanes A, Wang J, Buanz A et al (2015) 3D Printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm 12:4077–4084. https://doi.org/10.1021/ACS.MOLPHARMACEUT.5B00510

    Article  CAS  PubMed  Google Scholar 

  20. Kyobula M, Adedeji A, Alexander MR et al (2017) 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release 261:207–215. https://doi.org/10.1016/J.JCONREL.2017.06.025

    Article  CAS  PubMed  Google Scholar 

  21. Saadeh Y, Vyas D (2014) Nanorobotic applications in medicine: current proposals and designs. Am J Robot Surg 1:4–11. https://doi.org/10.1166/AJRS.2014.1010

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hu M, Ge X, Chen X et al (2020) Micro/nanorobot: a promising targeted drug delivery system. Pharmaceutics 12:1–18. https://doi.org/10.3390/PHARMACEUTICS12070665

    Article  Google Scholar 

  23. Pan X, Veroniaina H, Su N et al (2021) Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J Pharm Sci. https://doi.org/10.1016/J.AJPS.2021.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sung YK, Kim SW (2019) Recent advances in the development of gene delivery systems. Biomater Res 231(23):1–7. https://doi.org/10.1186/S40824-019-0156-Z

    Article  Google Scholar 

  25. Tewabe A, Abate A, Tamrie M et al (2021) Targeted drug delivery; from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc 14:1711–1724. https://doi.org/10.2147/JMDH.S313968

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benhabbour SR, Kovarova M, Jones C et al (2019) Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery. Nat Commun 101(10):1–12. https://doi.org/10.1038/s41467-019-12141-5

    Article  CAS  Google Scholar 

  27. Gomes CSF, Rautureau M, Gomes JHC, Silva EAF (2021) Interactions of clay and clay minerals with the human health. Miner latu sensu Hum Heal. https://doi.org/10.1007/978-3-030-65706-2_7

    Article  Google Scholar 

  28. Nizam El-Din HM, Ibraheim DM (2021) Biological applications of nanocomposite hydrogels prepared by gamma-radiation copolymerization of acrylic acid (AAc) onto plasticized starch (PLST)/montmorillonite clay (MMT)/chitosan (CS) blends. Int J Biol Macromol 192:151–160. https://doi.org/10.1016/J.IJBIOMAC.2021.09.196

    Article  CAS  PubMed  Google Scholar 

  29. Selvasudha N, Dhanalekshmi U-M, Krishnaraj S et al (2020) Multifunctional clay in pharmaceuticals. Clay Sci Technol. https://doi.org/10.5772/INTECHOPEN.92408

    Article  Google Scholar 

  30. García-Villén F, Carazo E, Borrego-Sánchez A, et al (2019) Clay minerals in drug delivery systems. In: Modified Clay and Zeolite Nanocomposite Materials. Elsevier, pp 129–166

  31. Ghadiri M, Chrzanowski W, Rohanizadeh R (2015) Biomedical applications of cationic clay minerals. RSC Adv 5:29467–29481. https://doi.org/10.1039/C4RA16945J

    Article  CAS  Google Scholar 

  32. Kaplan Can H, Şahin Ö (2015) Design, Synthesis and Characterization of 3,4-Dihydro-2H-pyran containing copolymer/clay nanocomposites. 52:465–475. https://doi.org/10.1080/10601325.2015.1029372

  33. Zhao D, Yu S, Sun B et al (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polym 10:462. https://doi.org/10.3390/POLYM10040462

    Article  Google Scholar 

  34. Lin KF, Hsu CY, Huang TS et al (2005) A novel method to prepare chitosan/montmorillonite nanocomposites. J Appl Polym Sci 98:2042–2047. https://doi.org/10.1002/APP.22401

    Article  CAS  Google Scholar 

  35. Qian L (2018) Cellulose-based composite hydrogels: preparation, structures, and applications. https://doi.org/10.1007/978-3-319-76573-0_23-1

  36. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36. https://doi.org/10.1016/j.clay.2006.06.015

    Article  CAS  Google Scholar 

  37. Surya R, Mullassery MD, Fernandez NB, Thomas D (2019) Synthesis and characterization of a clay-alginate nanocomposite for the controlled release of 5-Flurouracil. J Sci Adv Mater Devices 4:432–441. https://doi.org/10.1016/j.jsamd.2019.08.001

    Article  Google Scholar 

  38. Wang Y, Wang J, Yuan Z et al (2017) Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism. Colloids Surfaces B Biointerfaces 152:252–259. https://doi.org/10.1016/J.COLSURFB.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  39. Bashir S, Teo YY, Ramesh S et al (2018) Rheological behavior of biodegradable N-succinyl chitosan-g-poly (acrylic acid) hydrogels and their applications as drug carrier and in vitro theophylline release. Int J Biol Macromol 117:454–466. https://doi.org/10.1016/J.IJBIOMAC.2018.05.182

    Article  CAS  PubMed  Google Scholar 

  40. Aroğuz AZ, Teofilovic V, Budinski-Simendic JCH (2017) Highly swollen composite hydrogel for investigation of pantoprazole release profile. In: IUPAC-FAPS 2017. p 118

  41. Aguilera-Castro L, Martín-de-Argila-dePrados C, Albillos-Martínez A (2016) Practical considerations in the management of proton-pump inhibitors. Rev Esp Enferm Dig 108:145–153

    CAS  PubMed  Google Scholar 

  42. Teofilović V, Pavličević J, Erceg T et al (2021) Modification of Tokat Resadiye Bentonite with Cationic Surfactant. In: Čupić Ž (ed) Physical Chemistry 2021. The Society of Physical Chemists of Serbia, Belgrade, pp 489–491

    Google Scholar 

  43. Pentrák M, Hronský V, Pálková H et al (2018) Alteration of fine fraction of bentonite from Kopernica (Slovakia) under acid treatment: a combined XRD, FTIR, MAS NMR and AES study. Appl Clay Sci 163:204–213. https://doi.org/10.1016/J.CLAY.2018.07.028

    Article  Google Scholar 

  44. Timofeeva MN, Panchenko VN, Krupskaya VV et al (2017) Effect of nitric acid modification of montmorillonite clay on synthesis of solketal from glycerol and acetone. Catal Commun 90:65–69. https://doi.org/10.1016/J.CATCOM.2016.11.020

    Article  CAS  Google Scholar 

  45. Korsmeyer RW, Gurny R, Doelker E et al (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  46. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111

    CAS  PubMed  Google Scholar 

  47. Shaikh HK, Kshirsagar RV, Patil SG (2015) Mathematical models for drug release characterization: a review. Shaikh al World J Pharm Res 4:324

    CAS  Google Scholar 

  48. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407. https://doi.org/10.1016/J.EURPOLYMJ.2004.01.039

    Article  CAS  Google Scholar 

  49. Lente G (2015) Deterministic Kinetics in Chemistry and Systems Biology. Springer International Publishing, Cham

    Book  Google Scholar 

  50. D’Ottone L, Ochonogor EC (2017) Error analysis of absolute rate coefficient extrapolated under pseudo-first order conditions. J Turkish Chem Soc Sect A Chem 5:29–40

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of the Istanbul University-Cerrahpaşa. Project code: BAP-22775, and by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant no. 451-03-9/2021-14/200134).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection, and analysis. The first draft of the manuscript was written by AZ Aroguz and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vesna Teofilović.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teofilović, V., Agan, B., Pavličević, J. et al. Synthesis, characterization and kinetics of sustained pantoprazole release studies of interpenetrated poly(acrylic acid)-chitosan-bentonite hydrogels for drug delivery systems. Reac Kinet Mech Cat 135, 1423–1437 (2022). https://doi.org/10.1007/s11144-022-02209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02209-7

Keywords

Navigation