Skip to main content
Log in

A temperature-sensitive modified imprinted Ag-Poly (o-phenylenediamine) photocatalyst synthesized by microwave method for efficient degradation of ciprofloxacin

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The magnetic carbon material was synthesized by a simple solid-phase method, and a modified imprinting layer was formed on the surface of the magnetic carbon material by molecular imprinting and microwave methods, and the final modified imprinted Ag-Poly (o-phenylenediamine) (Ag-POPD) photocatalyst was used to degrade the antibiotic ciprofloxacin. The as prepared photocatalyst is very sensitive to temperature, and the ciprofloxacin degradation rate in ambient environment (25 °C) was 73.25% higher than at 40 °C. The photocatalyst has high selectivity to ciprofloxacin and is convenient to recover due to its magnetic properties. The significant increase in photocatalytic activity is mainly attributed to the synergistic effect between Ag and magnetic carbon materials that can accelerate the spatial separation of charge carriers. Furthermore, details of the photocatalytic degradation mechanism of the photocatalyst composite are discussed. The described method is a new single-step continuous microwave synthesis, which also opens new ways to modify/tune materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu Y, Cong B, Tan Z, Yan Y (2016) Synchronized separation, concentration and determination of trace sulfadiazine and sulfamethazine in food and environment by using polyoxyethylene lauryl ether-salt aqueous two-phase system coupled to high-performance liquid chromatography. Ecotox Environ Safe 133:105–113

    Article  CAS  Google Scholar 

  2. Liu N, Lu N, Su Y, Wang P, Quan X (2019) Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Sep Purif Technol 211:782–789

    Article  CAS  Google Scholar 

  3. Samsudin MFR, Frebillot C, Kaddoury Y, Sufian S, Ong W-J (2020) Bifunctional Z-Scheme Ag/AgVO3/g-C3N4 photocatalysts for expired ciprofloxacin degradation and hydrogen production from natural rainwater without using scavengers. J Environ Manag 270:110803

    Article  CAS  Google Scholar 

  4. Lu Z et al (2022) Heterotopic reaction strategy for enhancing selective reduction and synergistic oxidation ability through trapping Cr (VI) into specific reaction site: a stable and self-cleaning ion imprinted CdS/HTNW photocatalytic membrane. Appl Catal B 301:120787

    Article  CAS  Google Scholar 

  5. Zwane BN, Mabuba N, Orimolade BO, Koiki BA, Arotiba OA (2020) Photocatalytic degradation of ciprofloxacin and sulfamethoxazole on a carbon nanodot doped tungsten trioxide: degradation product study. Reac Kinet Mech Cat 131(1):453–470

    Article  CAS  Google Scholar 

  6. Huang J et al (2020) Fabrication of a ternary BiOCl/CQDs/rGO photocatalyst: The roles of CQDs and rGO in adsorption-photocatalytic removal of ciprofloxacin. Colloid Surf A 597:124758

    Article  CAS  Google Scholar 

  7. Lu Z et al (2019) Improved recyclability and selectivity of environment-friendly MFA-based heterojunction imprinted photocatalyst for secondary pollution free tetracycline orientation degradation. Chem Eng J 360:1262–1276

    Article  CAS  Google Scholar 

  8. Lu Z et al (2018) Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline. Chem Eng J 337:228–241

    Article  CAS  Google Scholar 

  9. Lu Z et al (2014) Microwave synthesis of a novel magnetic imprinted TiO2 photocatalyst with excellent transparency for selective photodegradation of enrofloxacin hydrochloride residues solution. Chem Eng J 249:15–26

    Article  CAS  Google Scholar 

  10. Zhu S-R, Qi Q, Zhao W-N, Fang Y, Han L (2018) Enhanced photocatalytic activity in hybrid composite combined BiOBr nanosheets and Bi2S3 nanoparticles. J Phys Chem Solids 121:163–171

    Article  CAS  Google Scholar 

  11. Zhang T, Dai Z, Liang B, Mu Y (2021) Facile synthesis of SnO2/SiC nanosheets for photocatalytic degradation of MO. J Inorg Organomet Polm 31(1):303–310

    Article  CAS  Google Scholar 

  12. Dan M et al (2019) Rich active-edge-site MoS2 anchored on reduction sites in metal sulfide heterostructure: toward robust visible light photocatalytic hydrogen sulphide splitting. Appl Catal B 256:117870

    Article  CAS  Google Scholar 

  13. Sayed M, Ismail M, Khan S, Tabassum S, Khan HM (2016) Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways. Environ Technol 37(5):590–602

    Article  CAS  PubMed  Google Scholar 

  14. Sayed M, Shah LA, Khan JA, Shah NS, Nisar J, Khan HM, Zhang P, Khan AR (2016) Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with exposed 001 facets. J Phys Chem A 120(50):9916–9931

    Article  CAS  PubMed  Google Scholar 

  15. Sayed M et al (2016) Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation. Environ Sci Pollut Res 23(13):13155–13168

    Article  CAS  Google Scholar 

  16. Wu Y et al (2020) Three-dimensional basswood-based membrane with well-designed multilevel/hierarchical imprinting surface: a high-efficiency selective separation system. Chem Eng J 398:125636

    Article  CAS  Google Scholar 

  17. Lu J et al (2020) Bidirectional molecularly imprinted membranes for selective recognition and separation of pyrimethamine: a double-faced loading strategy. J Membr Sci 601:117917

    Article  CAS  Google Scholar 

  18. Huo P et al (2012) Preparation molecular/ions imprinted photocatalysts of La3+@POPD/TiO2/fly-ash cenospheres: preferential photodegradation of TCs antibiotics. Chem Eng J 198:73–80

    Article  CAS  Google Scholar 

  19. Sun Z et al (2019) Simultaneous separation, concentration and determination of trace fluoroquinolone antibiotics in environmental samples using a polymer aqueous two-phase system coupled with HPLC. J Chem Technol Biot 94(9):2917–2927

    Article  CAS  Google Scholar 

  20. Zhang X et al (2021) High-efficiency removal of tetracycline by carbon-bridge-doped g-C3N4/Fe3O4 magnetic heterogeneous catalyst through photo-Fenton process. J Hazard Mater 418:126333

    Article  CAS  PubMed  Google Scholar 

  21. Lu Z et al (2021) Pollutant template method synthesis of oxygen vacancy and template cavity riched TB-TiO2@MFA towards selective photodegradation of ciprofloxacin. Appl Surf Sci 569:151027

    Article  CAS  Google Scholar 

  22. Kerkez O, Boz I (2013) Efficient removal of methylene blue by photocatalytic degradation with TiO2 nanorod array thin films. Reac Kinet Mech Cat 110(2):543–557

    Article  CAS  Google Scholar 

  23. Sun L et al (2019) Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C3N4 nanosheets. Chin J Catal 40(1):80–94

    Article  CAS  Google Scholar 

  24. Huo P et al (2014) Photocatalytic degradation of antibiotics in water using metal ion@TiO2/HNTs under visible light. Desalin Water Treat 52(37–39):6985–6995

    Article  CAS  Google Scholar 

  25. Riaz U, Ashraf SM, Aleem S, Budhiraja V, Jadoun S (2016) Microwave-assisted green synthesis of some nanoconjugated copolymers: characterisation and fluorescence quenching studies with bovine serum albumin. New J Chem 40(5):4643–4653

    Article  CAS  Google Scholar 

  26. Jadoun S, Biswal L, Riaz U (2018) Tuning the optical properties of poly(o-phenylenediamine-co-pyrrole) via template mediated copolymerization. Des Monomers Polym 21(1):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qin Y et al (2020) Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl Catal B 277:119254

    Article  CAS  Google Scholar 

  28. Sharma S, Khare N (2018) Hierarchical Bi2S3 nanoflowers: A novel photocatalyst for enhanced photocatalytic degradation of binary mixture of Rhodamine B and Methylene blue dyes and degradation of mixture of p-nitrophenol and p-chlorophenol. Adv Powder Technol 29(12):3336–3347

    Article  CAS  Google Scholar 

  29. Xu Y et al (2021) Hydrochloric acid-mediated synthesis of ZnFe2O4 small particle decorated one-dimensional PDI S-scheme heterojunction with excellent photocatalytic ability. Chin J Catal 43:1111

    Article  Google Scholar 

  30. Yue Y et al (2020) Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants. J Hazard Mater 384:121302

    Article  CAS  PubMed  Google Scholar 

  31. Jimenez-Rangel K, Samaniego-Benitez JE, Lartundo-Rojas L, Calderon HA, Mantilla A (2020) Ternary g-C3N4/NiOOH/Ag nanocomposite photocatalyst with efficient charges separation and high activity for H-2 production. Fuel 280:118672

    Article  CAS  Google Scholar 

  32. Torabi Momen M, Piri F, Karimian R (2020) Photocatalytic degradation of rhodamine B and methylene blue by electrochemically prepared nano titanium dioxide/reduced graphene oxide/poly (methyl methacrylate) nanocomposite. Reac Kinet Mech Cat 129(2):1145–1157

    Article  CAS  Google Scholar 

  33. Li W et al (2021) Magnetic assembly synthesis of high-efficiency recyclable flower-like MoS2@Fe3O4@Cu2O like-Z-scheme heterojunction towards efficient photodegradation of tetracycline. Appl Surf Sci 555:149730

    Article  CAS  Google Scholar 

  34. Lu Z et al (2019) Magnetic functional heterojunction reactors with 3D specific recognition for selective photocatalysis and synergistic photodegradation in binary antibiotic solutions. J Mater Chem A 7(23):13986–14000

    Article  CAS  Google Scholar 

  35. Wang Y-H, Zhao J-L, Liang Y (2013) Degradation kinetics of phenol by a titanium dioxide photocatalyst coupled with a magnetic field. Reac Kinet Mech Cat 109(1):273–283

    Article  CAS  Google Scholar 

  36. Jafari S, Yahyaei B, Kusiak-Nejman E, Sillanpää M (2015) The influence of carbonization temperature on the modification of TiO2 in the removal of methyl orange from aqueous solution by adsorption. Desalin Water Treat 57(40):18825–18835

    Article  CAS  Google Scholar 

  37. He F et al (2019) Selective reduction of Cu2+ with simultaneous degradation of tetracycline by the dual channels ion imprinted POPD-CoFe2O4 heterojunction photocatalyst. Chem Eng J 360:750–761

    Article  CAS  Google Scholar 

  38. Fan G et al (2021) Double photoelectron-transfer mechanism in Ag AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation. J Hazard Mater 403:123964

    Article  CAS  PubMed  Google Scholar 

  39. Peng J et al (2019) Enhanced selectivity for photodegrading ciprofloxacin by a magnetic photocatalyst modified with a POPD-CdS heterojunction embedded imprinted layer. New J Chem 43(6):2610–2623

    Article  CAS  Google Scholar 

  40. Tian X, Dai J, Zhu Z, Yan Y, Huo P (2020) Designed Redox Ions Pairs imprinted photocatalyst of Fe3+@PoPD/TiO2/HNTs for enhanced photocatalytic activity. Mater Technol 35(13–14):843–852

    Article  CAS  Google Scholar 

  41. Li YH et al (2013) Fabrication and characterization of Ag@C nanocables with high aspect ratios by hydrothermal process. Adv Mater Res 669:221–225

    Article  CAS  Google Scholar 

  42. Yang C et al (2017) Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD. Sci Rep-UK 7:3973

    Article  CAS  Google Scholar 

  43. Zhu L, Lu Y, Sun Z, Han J, Tan Z (2020) The application of an aqueous two-phase system combined with ultrasonic cell disruption extraction and HPLC in the simultaneous separation and analysis of solanine and Solanum nigrum polysaccharide from Solanum nigrum unripe fruit. Food Chem 304:125383

    Article  CAS  PubMed  Google Scholar 

  44. Yang X, Lu Y, Sun Z, Cui K, Tan Z (2018) Measurement and correlation of phase equilibria in aqueous two-phase systems containing polyoxyethylene cetyl ether and three organic salts at different temperatures. J Chem Eng Data 63(3):625–634

    Article  CAS  Google Scholar 

  45. Li B et al (2019) Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chem Eng J 365:405–414

    Article  CAS  Google Scholar 

  46. Li B et al (2020) A controllable floating pDA-PVDF bead for enhanced decomposition of H2O2 and degradation of dyes. Chem Eng J 385:118672

    Google Scholar 

  47. Lu Z et al (2020) Development of magnetic imprinted PEDOT/CdS heterojunction photocatalytic nanoreactors: 3-dimensional specific recognition for selectively photocatalyzing danofloxacin mesylate. Appl Catal B 268:118433

    Article  CAS  Google Scholar 

  48. Zhang P, Wang S, Guan BY, Lou XW (2019) Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energ Environ Sci 12(1):164–168

    Article  CAS  Google Scholar 

  49. Chen J et al (2020) Preparation of SnS2/TiO2 by a thermo-solvent ultrasonic method and its high photo-catalytic performance for decontamination under visible light. J Environ Chem Eng 8(5):104121

    Article  CAS  Google Scholar 

  50. Yao L et al (2022) Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: performance and mechanism. J Environ Chem Eng 10(3):107397

    Article  CAS  Google Scholar 

  51. Zhang X et al (2022) MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal. Chem Eng J 430:132728

    Article  CAS  Google Scholar 

  52. Wang L, Yin H, Wang S, Wang J, Ai S (2022) Ni2+-assisted catalytic one-step synthesis of Bi/BiOCl/Bi2O2CO3 heterojunction with enhanced photocatalytic activity under visible light. Appl Catal B 305:121039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Youth Fund (21706104 and 21908080), Natural Science Foundation of Jiangsu Province (BK20180884), Zhenjiang Key Research & Development Project (Social Development) (SH2018021), Jiangsu Government Scholarship for Overseas Studies (JS-2018-241 and JS-2018-243), Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, the Youth Talent Development Program of Jiangsu University, and the financial support of the Research Foundation of Jiangsu University, China (14JDG148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5025 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tang, L., Xu, L. et al. A temperature-sensitive modified imprinted Ag-Poly (o-phenylenediamine) photocatalyst synthesized by microwave method for efficient degradation of ciprofloxacin. Reac Kinet Mech Cat 135, 2137–2151 (2022). https://doi.org/10.1007/s11144-022-02208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02208-8

Keywords

Navigation