Skip to main content
Log in

Dysprosium-doped mesoporous TiO2 as an effective photocatalyst for the oxidation of methyl orange, o- and m-xylenes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Titanium dioxide samples doped with different amounts of dysprosium were synthesized with the sol–gel template method. The structure of the obtained materials was investigated by X-ray fluorescence, scanning electron microscopy, X-ray diffraction (XRD), diffuse reflection spectroscopy, low-temperature adsorption–desorption of nitrogen, and inductively coupled plasma mass spectrometry. According to XRD, it is assumed that Dy3+ ions are statistically distributed in the titanium dioxide phase, predominantly located in interstices or on the surface of TiO2 crystallites. The diffraction patterns show no peaks characteristic of the Dy2O3 phase, the average sizes of crystallites of doped samples decreased compared to the sizes of undoped samples from 16.9 to 7.0–7.6 nm, and the crystal lattice parameters of the obtained materials differ. The introduction of dysprosium into the structure of titanium dioxide reduced the energy of the band gap of the obtained materials from 2.83 to 2.67–2.78 eV, which makes it possible to use them as catalysts for the photooxidation of methyl orange, o- and m-xylenes in water using the visible light. The maximum photocatalytic activity of the oxidation of methyl orange, o- and m-xylenes is characterized by a TiO2 sample containing 9.5% dysprosium (Dy(9.5)/TiO2)—after 2.5 h the degradation of o- and m-xylenes on this catalyst was approximately 80 and 95%, respectively. The degradation of methyl orange on the (Dy(9.5)/TiO2) sample was 73% after 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data is available.

Code availability

Not applicable.

References

  1. Kanan S, Moyet MA, Arthur RB, Patterson HH (2019) Catal Rev 62:1–65. https://doi.org/10.1080/01614940.2019.1613323

    Article  CAS  Google Scholar 

  2. Onkani SP, Diagboya PN, Mtunzi FM, Klink MJ, Olu-Owolabi BI, Pakade V (2020) J Environ Manage 260:110145. https://doi.org/10.1016/j.jenvman.2020.110145

    Article  CAS  PubMed  Google Scholar 

  3. Jian Z, Huang S, Cao Y, Zhang Y (2016) Photochem Photobiol 92:363–370. https://doi.org/10.1111/php.12575

    Article  CAS  PubMed  Google Scholar 

  4. Hong X, Tan J, Zhu H, Feng N, Yang Y, Irvine JTS, Wang L, Liu G, Cheng H-M (2019) Chem Eur J 25:1787–1794. https://doi.org/10.1002/chem.201805283

    Article  CAS  PubMed  Google Scholar 

  5. Low J, Cheng B, Yu J (2017) Appl Surf Sci 392:658–686. https://doi.org/10.1016/J.APSUSC.2016.09.093

    Article  CAS  Google Scholar 

  6. Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z (2012) Adv Funct Mater 23:1743–1749. https://doi.org/10.1002/adfm.201202349

    Article  CAS  Google Scholar 

  7. Binas V, Venieri D, Kotzias D, Kiriakidis G (2017) J Materiomics 3:3–16. https://doi.org/10.1016/J.JMAT.2016.11.002

    Article  Google Scholar 

  8. Cha BJ, Saqlain S, Seo HO, Kim YD (2019) Appl Surf Sci 479:31–38. https://doi.org/10.1016/j.apsusc.2019.01.261

    Article  CAS  Google Scholar 

  9. Murugan R, Ganesh Ram C (2018) Mater Today: Proc 5:415–421. https://doi.org/10.1016/j.matpr.2017.11.100

    Article  CAS  Google Scholar 

  10. Negishi N, Sugasawa M, Miyazaki Y, Hirami Y, Koura S (2019) Water Res 150:40–46. https://doi.org/10.1016/j.watres.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  11. Ferrari-Lima AM, de Souza RP, Mendes SS, Marques RG, Gimenes ML, Fernandez-Machado NRC (2015) Catal Today 241:40–46. https://doi.org/10.1016/j.cattod.2014.03.042

    Article  CAS  Google Scholar 

  12. Wang M, Hua J, Yang Y (2018) Spectrochim Acta Part A 199:102–109. https://doi.org/10.1016/j.saa.2018.03.041

    Article  CAS  Google Scholar 

  13. Sanchez-Rodriguez D, Medrano MGM, Remita H, Escobar-Barrios V (2018) J Environ Chem Eng 6:1601–1612. https://doi.org/10.1016/j.jece.2018.01.061

    Article  CAS  Google Scholar 

  14. Li H, Ji J, Cheng C, Liang K (2018) J Phys Chem Solids 122:25–30. https://doi.org/10.1016/j.jpcs.2018.06.012

    Article  CAS  Google Scholar 

  15. Fatima R, Naveed Afridi M, Kumar V, Lee J, Ali I, Kim K-H, Kim J-O (2019) J Clean Prod 231:899–912. https://doi.org/10.1016/j.jclepro.2019.05.292

    Article  CAS  Google Scholar 

  16. Unwiset P, Makdee A, Chayakul Chenapattharol K, Kidkhunthod P (2018) J Phys Chem Solids 120:231–240. https://doi.org/10.1016/j.jpcs.2018.05.003

    Article  CAS  Google Scholar 

  17. Amorim SM, Suave J, Andrade L, Mendes A, Moreira RFPM (2018) Prog Org Coat 118:48–56. https://doi.org/10.1016/j.porgcoat.2018.01.005

    Article  CAS  Google Scholar 

  18. Tbessi I, Benito M, Molins E, Llorca J, Najjar W (2019) Solid State Sci 88:20–28. https://doi.org/10.1016/j.solidstatesciences.2018.12.004

    Article  CAS  Google Scholar 

  19. Kumar A, Khan M, Fanf L, Lo IMC (2019) J Hazard Mater 230:108–116. https://doi.org/10.1016/j.jhazmat.2017.07.048

    Article  CAS  Google Scholar 

  20. Niaz K, Bahadar H, Maqbool F, Abdollahi M (2015) EXCLI J 14:1167–1186. https://doi.org/10.17179/excli2015-623

    Article  PubMed  PubMed Central  Google Scholar 

  21. Singh RP, Singh PK, Gupta R, Singh RL (2018) Advances in biological treatment of industrial waste water and their recycling for a sustainable future. Springer, Singapore, pp 225–266. https://doi.org/10.1007/978-981-13-1468-1_8

    Book  Google Scholar 

  22. Zhang L, Qin M, Yu W, Zhang Q, Xie H, Sun Z, Shao Q, Guo X, Hao L, Zheng Y, Guo Z (2017) J Electrochem Soc 164:H1086–H1090

    Article  CAS  Google Scholar 

  23. Khalid NR, Majid A, Bilal Tahir M, Niaz NA, Khalid S (2017) Ceram Int 43:14552–14571. https://doi.org/10.1016/j.ceramint.2017.08.143

    Article  CAS  Google Scholar 

  24. Lv N, Li Y, Huang Z, Li T, Ye S, Dionysios D (2019) Appl Catal B 246:303–311. https://doi.org/10.1016/j.apcatb.2019.01.068

    Article  CAS  Google Scholar 

  25. Kim S-G, Dhandole LK, Lim J-M, Chae W-S, Chung H-S, Oh B-T, Jang JS (2018) Appl Catal B 224:791–803. https://doi.org/10.1016/j.apcatb.2017.11.013

    Article  CAS  Google Scholar 

  26. Zhou F, Yan C, Wang H, Zhou S, Komarneni S (2019) Mater Lett 228:100–103. https://doi.org/10.1016/j.matlet.2018.05.138

    Article  CAS  Google Scholar 

  27. Parnicka P, Mazierski P, Lisowski W, Klimczuk T, Nadolna J, Zaleska-Medynska A (2019) Results Phys 12:412–423. https://doi.org/10.1016/j.rinp.2018.11.073

    Article  Google Scholar 

  28. Zikriya M, Nadaf YF, Vijai Bharathy P, Renuka CG (2019) J Rare Earths 37:24–31. https://doi.org/10.1016/j.jre.2018.05.012

    Article  CAS  Google Scholar 

  29. Shafigulin RV, Filippova EO, Shmelev AA, Bulanova AV (2019) Catal Lett 149:916–928. https://doi.org/10.1007/s10562-019-02678-x

    Article  CAS  Google Scholar 

  30. Thida SN, Lek S, Rungrote K, Matthana K (2020) Curr Appl Phys 20:249–254. https://doi.org/10.1016/j.cap.2019.11.008

    Article  Google Scholar 

  31. Mousavi M, Soleimani M, Hamzehloo M, Badiei A, Ghasemi JB (2021) Mater Chem Phys 258:123912. https://doi.org/10.1016/j.matchemphys.2020.123912

    Article  CAS  Google Scholar 

  32. Mathew S, Ganguly P, Kumaravel V, Harrison J, Hinder JS, Bartlett J, Pillai SC (2020) Mater Today: Proc 33:2458–2464. https://doi.org/10.1016/j.matpr.2020.01.336

    Article  CAS  Google Scholar 

  33. Stengl V, Bakardjieva S, Murafa N (2009) Mater Chem Phys 114:217–226. https://doi.org/10.1016/j.matchemphys.2008.09.025

    Article  CAS  Google Scholar 

  34. Liu Y, Zhang Q, Xu M, Yuan H, Chen Y, Zhang J, Luo K, Zhang J, You B (2019) Appl Surf Sci 476:632–640. https://doi.org/10.1016/j.apsusc.2019.01.137

    Article  CAS  Google Scholar 

  35. Chen Q, Zhang M, Ma Q, Wang Q (2019) J Non-Cryst Solids 507:46–55. https://doi.org/10.1016/j.jnoncrysol.2018.09.025

    Article  CAS  Google Scholar 

  36. Lee JY, Choi J-H (2019) Materials 12:1265. https://doi.org/10.3390/ma12081265

    Article  CAS  PubMed Central  Google Scholar 

  37. Nguyen CH, Fu C-C, Juang R-S (2018) J Clean Prod 202:413–427. https://doi.org/10.1016/j.jclepro.2018.08.110

    Article  CAS  Google Scholar 

  38. Zyoud A, Zaatar N, Saadeddin I, Helal MH, Campet G, Hakim M, Park DH, Hilal HS (2011) Solid State Sci 13:1268–1275. https://doi.org/10.1016/j.solidstatesciences.2011.03.020

    Article  CAS  Google Scholar 

  39. Lofti H, Heydarinasab A, Mansouri M, Hosseini SH (2022) J Environ Chem Eng 10:107066. https://doi.org/10.1016/j.jece.2021.107066

    Article  CAS  Google Scholar 

  40. Azad K, Gajanan P (2017) Chem Sci J 8:1000164. https://doi.org/10.4172/2150-3494.1000164

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Grant FSSS-2020-0016 within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr A. Shmelev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors agree to the publication of the article data.

Research involving humans and/or animals

Not applicable.

Consent to participate

The authors agree to participate.

Consent for publication

The authors agree for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmelev, A.A., Shafigulin, R.V. & Bulanova, A.V. Dysprosium-doped mesoporous TiO2 as an effective photocatalyst for the oxidation of methyl orange, o- and m-xylenes. Reac Kinet Mech Cat 135, 1047–1058 (2022). https://doi.org/10.1007/s11144-022-02198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02198-7

Keywords

Navigation