Skip to main content
Log in

Oxidation of chlorosilanes by atmospheric air in thin layers

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A novel method for the oxidation of chlorosilanes with atmospheric air in a pre-generated thin layer with a transformed molecular structure on a solid surface is considered. The proposed approach completely excludes the hydrolysis of chlorosilanes in air, as was experimentally confirmed. As was shown by the example of di-, tri-, and tetra-chlorosilane, they can be oxidized when they are encapsulated inside a silicon oxide cell previously prepared in an argon atmosphere. The encapsulated structures undergo slow transformations in air; however, even after a long time, hydrolysis does not occur in them. It is assumed that tautomeric species arising in the thin layers can form spatial clusters due to intermolecular bonding. For di-, tri-, and tetra-chlorosilane, the results of an IR study of their oxidation in the thin layers in situ for a month, electron microscopy of the obtained oxide films are presented, and a possible model of this process is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Baxter RI, Rawlings RD, Iwashita N, Sawada Y (2000) Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation. Carbon 38:441–449. https://doi.org/10.1016/S0008-6223(99)00125-6

    Article  CAS  Google Scholar 

  2. Martínez S, Moreno-Mañas M, Vallribera A et al (2006) Highly dispersed nickel and palladium nanoparticle silica aerogels: sol–gel processing of tethered metal complexes and application as catalysts in the Mizoroki-Heck reaction. New J Chem 30:1093–1097. https://doi.org/10.1039/B604544H

    Article  Google Scholar 

  3. Xiao Y, Wang Y, Luo G, Bai S (2016) Using hydrolysis of silicon tetrachloride to prepare highly dispersed precipitated nanosilica. Chem Eng J 283:1–8. https://doi.org/10.1016/j.cej.2015.07.045

    Article  CAS  Google Scholar 

  4. Riisager A (2003) Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts. J Catal 219:452–455. https://doi.org/10.1016/S0021-9517(03)00223-9

    Article  CAS  Google Scholar 

  5. Adam W, Mitchell CM, Saha-Möller CR et al (1998) The selective catalytic oxidation of silanes to silanols with H2O2 activated by the Ti-beta zeolite. Chem Commun. https://doi.org/10.1039/a807442i

    Article  Google Scholar 

  6. Limnios D, Kokotos CG (2013) Organocatalytic oxidation of organosilanes to silanols. ACS Catal 3:2239–2243. https://doi.org/10.1021/cs400515w

    Article  CAS  Google Scholar 

  7. Bähr S, Brinkmann-Chen S, Garcia-Borràs M et al (2020) Selective enzymatic oxidation of silanes to silanols. Angew Chem Int Ed 59:15507–15511. https://doi.org/10.1002/anie.202002861

    Article  CAS  Google Scholar 

  8. Jeon M, Han J, Park J (2012) Transformation of silanes into silanols using water and recyclable metal nanoparticle catalysts. ChemCatChem 4:521–524. https://doi.org/10.1002/cctc.201100456

    Article  CAS  Google Scholar 

  9. Villemin E, Gravel E, Jawale D, v, et al (2015) Polydiacetylene nanotubes in heterogeneous catalysis: application to the gold-mediated oxidation of silanes. Macromol Chem Phys 216:2398–2403. https://doi.org/10.1002/macp.201500402

    Article  CAS  Google Scholar 

  10. Li J, Xu D, Shi G et al (2021) Oxidation of silanes to silanols with oxygen via photoredox catalysis. ChemistrySelect 6:8345–8348. https://doi.org/10.1002/slct.202101241

    Article  CAS  Google Scholar 

  11. Wang J, Li B, Liu L-C et al (2018) Metal-free visible-light-mediated aerobic oxidation of silanes to silanols. SCIENCE CHINA Chem 61:1594–1599. https://doi.org/10.1007/s11426-018-9289-9

    Article  CAS  Google Scholar 

  12. Vorotyntsev A, v., Markov AN, Kapinos AA, et al (2021) Synthesis and comparative characterization of functionalized nanoporous silica obtained from tetrachloro- and tetraethoxysilane by a sol-gel method. Phosphorus Sulfur Silicon Relat Elem 196:176–188. https://doi.org/10.1080/10426507.2020.1825433

    Article  CAS  Google Scholar 

  13. Corriu RJP, Dabosi G, Martineau M (1978) Mechanism of hydrolysis of chlorosilanes-nucleophilic catalysis-kinetic studies and evidence for a hexacoordinate intermediate. J Organomet Chem 150:27–38. https://doi.org/10.1016/S0022-328X(00)85545-X

    Article  CAS  Google Scholar 

  14. Closser RG, Bergsman DS, Bent SF (2018) Molecular layer deposition of a highly stable silicon oxycarbide thin film using an organic chlorosilane and water. ACS Appl Mater Interfaces 10:24266–24274. https://doi.org/10.1021/acsami.8b06057

    Article  CAS  PubMed  Google Scholar 

  15. Rivera D, Harris JM (2001) In situ ATR-FT-IR kinetic studies of molecular transport and surface binding in thin sol−gel films: reactions of chlorosilane reagents in porous silica materials. Anal Chem 73:411–423. https://doi.org/10.1021/ac000947j

    Article  CAS  PubMed  Google Scholar 

  16. Wakabayashi R, Sugiura Y, Shibue T, Kuroda K (2011) Practical conversion of chlorosilanes into alkoxysilanes without generating HCl. Angew Chem Int Ed 50:10708–10711. https://doi.org/10.1002/anie.201104948

    Article  CAS  Google Scholar 

  17. Eremin DB, Ananikov VP (2017) Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord Chem Rev 346:2–19. https://doi.org/10.1016/j.ccr.2016.12.021

    Article  CAS  Google Scholar 

  18. Grinvald I, Kapustin R (2021) IR detection of the methane halides fluid-like state at ambient conditions. J Serb Chem Soc 86:1067–1074. https://doi.org/10.2298/JSC210426048G

    Article  CAS  Google Scholar 

  19. de los Arcos T, Müller H, Wang F, et al (2021) Review of infrared spectroscopy techniques for the determination of internal structure in thin SiO2 films. Vib Spectrosc 114:103256. https://doi.org/10.1016/j.vibspec.2021.103256

    Article  CAS  Google Scholar 

  20. Grinvald II, Kalagaev IYu, Petukhov AN, Kapustin R, v. (2019) IR Manifestation of non-covalent interaction in organic liquids. Russ J Phys Chem A 93:2645–2649. https://doi.org/10.1134/S0036024419130107

    Article  CAS  Google Scholar 

  21. Grinvald I, Kalagaev I, Petukhov A et al (2019) Self-association of carbon tetrachloride in gas and condensed phase. Struct Chem 30:1659–1664. https://doi.org/10.1007/s11224-019-01349-2

    Article  CAS  Google Scholar 

  22. Szabó G, Szieberth D, Nyulászi L (2015) Theoretical study of the hydrolysis of chlorosilane. Struct Chem 26:231–238. https://doi.org/10.1007/s11224-014-0543-y

    Article  CAS  Google Scholar 

  23. Szabó G, Nyulászi L (2017) Substituent effect on the hydrolysis of chlorosilanes: quantum chemical and QSPR study. Struct Chem 28:333–343. https://doi.org/10.1007/s11224-016-0881-z

    Article  CAS  Google Scholar 

  24. Ravasio S, Masi M, Cavallotti C (2013) Analysis of the gas phase reactivity of chlorosilanes. J Phys Chem A 117:5221–5231. https://doi.org/10.1021/jp403529x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the Framework of the Basic Part of the State Task (theme FSWE-2020-0008 project 0728-2020-0008). The equipment of the Ural Center for Shared Use “Modern Nanotechnology” UrFU was used.

Funding

The authors have no relevant financial or non-financial interests to disclose. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article. Figures were created using the Windows 10 pre-installed program “Paint”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif I. Grinvald.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapustin, R.V., Grinvald, I.I., Vorotyntsev, A.V. et al. Oxidation of chlorosilanes by atmospheric air in thin layers. Reac Kinet Mech Cat 135, 835–846 (2022). https://doi.org/10.1007/s11144-022-02177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02177-y

Keywords

Navigation