Skip to main content
Log in

Application of magnetic sulfonated Alnus waste leaves as a heterogeneous catalyst for multi-component reactions; comparison and evaluation of acidity of eleven different leaves

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A comprehensive study was carried out for the first time on the acidity of eleven different leaves. After functionalization of the leaves with –SO3H groups, the most acidic one was magnetized using nickel ferrite nanoparticles. This novel, inexpensive, green and biodegradable catalyst showed high activity in the synthesis of pyrazoline and 2-amino nicotinonitriles. Some compounds are new and have never been synthesized before and confirmed by FT-IR, 1H NMR and 13C NMR analysis. All of these compounds possess multiple biological activities. The heterogeneous magnetic catalyst (NiFe2O4-Alnus-SO3H) was characterized by various physicochemical techniques such as FT-IR spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermal gravimetric analysis/differential thermogravimetry (TGA/DTG), and VSM techniques which showed high sulfur content 0.92 (mmol/g) and high acidic strength. The main advantages of this method are high yields, short reaction time, easy work-up, green solvent, heterogeneity of the catalyst and simple purification of compounds. It is important to mention that there is no report on the preparation of heterogeneous acid catalyst from waste leaves for the synthesis pyrazoline and 2-amino nicotinonitriles derivatives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2

Similar content being viewed by others

Data availability

All relevant data are within the paper and its Supporting Information files.

References

  1. Shrotri A, Kobayashi H, Fukuoka A (2018) Cellulose depolymerization over heterogeneous catalysts. Acc Chem Res 51:761–768

    Article  CAS  PubMed  Google Scholar 

  2. Lin L, Yan R, Liu Y, Jiang W (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresour Technol 101:8217–8223

    Article  CAS  PubMed  Google Scholar 

  3. Betiku E, Akintunde AM, Ojumu TV (2016) Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon’s plume (Bauhinia monandra) seed oil: a process parameters optimization study. Energy 103:797–806

    Article  CAS  Google Scholar 

  4. Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications, Washington, D.C.

    Book  Google Scholar 

  5. Chen Y, Wei J, Duyar MS, Ordomsky VV, Khodakov AY, Liu J (2021) Carbon-based catalysts for Fischer-Tropsch synthesis. Chem Soc Rev 50:2337–2366

    Article  CAS  PubMed  Google Scholar 

  6. Mantovan J, Giraldo GAG, Marim BM, Garcia PS, Baron AM, Mali S (2021) Cellulose-based materials from orange bagasse employing environmentally friendly approaches. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01279-2

    Article  Google Scholar 

  7. Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL (2012) Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour Technol 114:663–669

    Article  CAS  PubMed  Google Scholar 

  8. Wang G, Li W, Li B, Chen H (2008) TG study on pyrolysis of biomass and its three components under syngas. Fuel 87:552–558

    Article  CAS  Google Scholar 

  9. Liu H, shuang Guo H, jing Wang X, zhong Jiang J, Lin H, Han S, peng Pei S (2016) Mixed and ground KBr-impregnated calcined snail shell and kaolin as solid base catalysts for biodiesel production. Renew Energy 93:648–657

    Article  CAS  Google Scholar 

  10. Agarwal S, Lathwal A, Nath M (2021) Recent advances on cellulose sulfuric acid as sustainable and environmentally benign organocatalyst for organic transformations. Curr Organocatal 8:72–92

    Article  CAS  Google Scholar 

  11. Aksoy M, Kilic H, Nişancı B, Metin Ö (2021) Recent advances in the development of palladium nanocatalysts for sustainable organic transformations. Inorg Chem Front 8:499–545

    Article  CAS  Google Scholar 

  12. Soni J, Sethiya A, Agarwal S (2021) The role of carbon-based solid acid catalysts in organic synthesis. Adv Org Synth 14(14):235

    Article  Google Scholar 

  13. Daneshfar Z, Rostami A (2015) Cellulose sulfonic acid as a green, efficient, and reusable catalyst for Nazarov cyclization of unactivated dienones and pyrazoline synthesis. RSC Adv 5:104695–104707

    Article  CAS  Google Scholar 

  14. Gohain M, Laskar K, Phukon H, Bora U, Kalita D, Deka D (2020) Towards sustainable biodiesel and chemical production: multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves. Waste Manage (Oxford) 102:212–221

    Article  CAS  Google Scholar 

  15. Sarfraz I, Rasul A, Jabeen F, Younis T, Zahoor MK, Arshad M, Ali M (2017) Fraxinus: a plant with versatile pharmacological and biological activities. Evid Based Complement Altern Med. https://doi.org/10.1155/2017/4269868

    Article  Google Scholar 

  16. Wang L, Waltenberger B, Pferschy-Wenzig E-M, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 92:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT (2014) Traditional uses, phytochemistry and pharmacology of Ficus carica: a review. Pharm Biol 52:1487–1503

    Article  CAS  PubMed  Google Scholar 

  18. Nieto G, Ros G, Castillo J (2018) Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): a review. Medicines 5:98

    Article  CAS  PubMed Central  Google Scholar 

  19. Jiao Y, Wang X, Jiang X, Kong F, Wang S, Yan C (2017) Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet-and streptozotocin-induced type 2 diabetes in rats. J Ethnopharmacol 199:119–127

    Article  CAS  PubMed  Google Scholar 

  20. Ma’Mani L, Hajihosseini E, Saeedi M, Mahdavi M, Asadipour A, Firoozpour L, Shafiee A, Foroumadi A (2016) Sulfonic acid supported phosphonium based ionic liquid functionalized SBA-15 for the synthesis of 2-amino-3-cyano-4, 6-diarylpyridines. Synth React Inorg Met Org Chem 46:306–310

    Article  CAS  Google Scholar 

  21. Zhang F, Zhao Y, Sun L, Ding L, Gu Y, Gong P (2011) Synthesis and anti-tumor activity of 2-amino-3-cyano-6-(1H-indol-3-yl)-4-phenylpyridine derivatives in vitro. Eur J Med Chem 46:3149–3157

    Article  CAS  PubMed  Google Scholar 

  22. Murata T, Shimada M, Sakakibara S, Yoshino T, Kadono H, Masuda T, Shimazaki M, Shintani T, Fuchikami K, Sakai K (2003) Discovery of novel and selective IKK-β serine-threonine protein kinase inhibitors. Part 1. Bioorg Med Chem Lett 13:913–918

    Article  CAS  PubMed  Google Scholar 

  23. Bekhit AA, Baraka AM (2005) Novel milrinone analogs of pyridine-3-carbonitrile derivatives as promising cardiotonic agents. Eur J Med Chem 40:1405–1413

    Article  CAS  PubMed  Google Scholar 

  24. Deng J, Sanchez T, Al-Mawsawi LQ, Dayam R, Yunes RA, Garofalo A, Bolger MB, Neamati N (2007) Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Biorg Med Chem 15:4985–5002

    Article  CAS  Google Scholar 

  25. Johnson M, Younglove B, Lee L, LeBlanc R, Holt H Jr, Hills P, Mackay H, Brown T, Mooberry SL, Lee M (2007) Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorg Med Chem Lett 17:5897–5901

    Article  CAS  PubMed  Google Scholar 

  26. Ratković Z, Juranić ZD, Stanojković T, Manojlović D, Vukićević RD, Radulović N, Joksović MD (2010) Synthesis, characterization, electrochemical studies and antitumor activity of some new chalcone analogues containing ferrocenyl pyrazole moiety. Bioorg Chem 38:26–32

    Article  PubMed  CAS  Google Scholar 

  27. Kumar L, Lal K, Kumar A, Paul AK, Kumar A (2021) Pyrazoline tethered 1, 2, 3-triazoles: Synthesis, antimicrobial evaluation and in silico studies. J Mol Struct 1246:131154

    Article  CAS  Google Scholar 

  28. Mantzanidou M, Pontiki E, Hadjipavlou-Litina D (2021) Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules 26:3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dash B, Karim S (2021) Pyrazoline heterocyclic: a review. Int J Pharm Sci Res 12:2570–2588

    CAS  Google Scholar 

  30. Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM (2009) Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4, 5-dihydro-5-aryl-1-[4-(aryl)-1, 3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem 44:2632–2635

    Article  CAS  PubMed  Google Scholar 

  31. Bhat MA, Khan AA, Al-Omar MA, Khan AA (2017) Synthesis and anti-candidal activity of some new pyrazoline derivatives. Biomed Res 28:3082–3087

    CAS  Google Scholar 

  32. Hassan SY (2013) Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules 18:2683–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morais CS, Mengarda AC, Miguel FB, Enes KB, Rodrigues VC, Espírito-Santo MCC, Siyadatpanah A, Wilairatana P, Couri MR, de Moraes J (2021) Pyrazoline derivatives as promising novel antischistosomal agents. Sci Rep 11:1–13

    Article  CAS  Google Scholar 

  34. Vellingiri A, Murugan D, Gnana Kumar G, Alagusundaram P (2021) An elegant and efficient synthesis of heterocycles integrated with bis-N-acyl pyrazoline and bis-1, 2, 3-triazole via a green synthetic methodology. J Heterocycl Chem 58:2359–2371

    Article  CAS  Google Scholar 

  35. Shaik AB, Bhandare RR, Nissankararao S, Edis Z, Tangirala NR, Shahanaaz S, Rahman MM (2020) Design, facile synthesis and characterization of dichloro substituted chalcones and dihydropyrazole derivatives for their antifungal, antitubercular and antiproliferative activities. Molecules 25:3188

    Article  CAS  PubMed Central  Google Scholar 

  36. Pizzuti L, Barschak AG, Stefanello FM, Farias MD, Lencina C, Roesch-Ely M, Cunico W, Moura S, Pereira CMP (2014) Environment-friendly synthesis of bioactive pyrazoles. Curr Org Chem 18:115–126

    Article  CAS  Google Scholar 

  37. Rosa BNd, Venzke D, Poletti T, de Lima NP, Camacho JT, Mariotti KC, dos Santos MA, Pizzuti L, Carreño NL, Pereira CM (2020) Microwave assisted synthesis of thiocarbamoylpyrazoles and application as an alternative latent fingermark developers. J Braz Chem Soc 31:1327–1331

    Google Scholar 

  38. Khan SS, Hasan A (2007) Synthesis of some new bioactive 1-N-subtituted 3, 5-diaryl-2-pyrazolines. Heterocycl Commun 13:131–138

    Article  CAS  Google Scholar 

  39. Ranjan P, Arora L, Prakash R, Aneja DK, Prakash O (2017) The chemistry of α, β-ditosyloxy ketones: hypervalent iodine (III) mediated synthesis of alkynes from α, β-unsaturated carbonyl compounds containing pyrazole moiety. Lett Org Chem 14:236–242

    Article  CAS  Google Scholar 

  40. Thirunarayanan G, Sekar K (2016) Solvent-free one-pot cyclization and acetylation of chalcones: synthesis of some 1-acetyl pyrazoles and spectral correlations of 1-(3-(3, 4-dimethylphenyl)-5-(substituted phenyl)-4, 5-dihydro-1H-pyrazole-1-yl) ethanones. J Saudi Chem Soc 20:661–672

    Article  CAS  Google Scholar 

  41. Zhao P-L, Wang F, Zhang M-Z, Liu Z-M, Huang W, Yang G-F (2008) Synthesis, fungicidal, and insecticidal activities of β-methoxyacrylate-containing N-acetyl pyrazoline derivatives. J Agric Food Chem 56:10767–10773

    Article  CAS  PubMed  Google Scholar 

  42. Moghaddam FM, Daneshfar M, Azaryan R (2020) A green and efficient route for P−S−C bond construction using copper ferrite nanoparticles as catalyst: a TD-DFT study. Phosphorus Sulfur Silicon Relat Elem 196:311–315

    Article  CAS  Google Scholar 

  43. Moghaddam FM, Daneshfar M, Azaryan R, Pirat J-L (2020) Copper ferrite nanoparticles catalyzed formation of β-Ketophosphonates via oxyphosphorylation of styrenes with H-phosphonates: A DFT study on UV–vis absorption spectra. Catal Commun 141:106015

    Article  CAS  Google Scholar 

  44. Burhenne L, Messmer J, Aicher T, Laborie M-P (2013) The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrolysis 101:177–184

    Article  CAS  Google Scholar 

  45. Skreiberg A, Skreiberg Ø, Sandquist J, Sørum L (2011) TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel 90:2182–2197

    Article  CAS  Google Scholar 

  46. Tondro H, Zilouei H, Zargoosh K, Bazarganipour M (2021) Nettle leaves-based sulfonated graphene oxide for efficient hydrolysis of microcrystalline cellulose. Fuel 284:118975

    Article  CAS  Google Scholar 

  47. Zhou Y, Niu S, Li J (2016) Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers Manage 114:188–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Sharif University of Technology (SUT). Thanks to Dr. Zahra Daneshfar for helping us with this project, and thanks to Ms. Asakereh for helping us collect the leaves.

Author information

Authors and Affiliations

Authors

Contributions

FMM: project administration-lead, supervision-lead, writing-review &editing-equal. MD: data curation-equal, formal analysis-lead, investigation-equal, methodology-equal, writing-original draft-lead.

Corresponding author

Correspondence to Firouz Matloubi Moghaddam.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17880 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, F.M., Daneshfar, M. Application of magnetic sulfonated Alnus waste leaves as a heterogeneous catalyst for multi-component reactions; comparison and evaluation of acidity of eleven different leaves. Reac Kinet Mech Cat 135, 811–833 (2022). https://doi.org/10.1007/s11144-022-02176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02176-z

Keywords

Navigation