Skip to main content
Log in

Metal dusting as a key route to produce functionalized carbon nanofibers

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present paper reports a new method of producing N-doped carbon nanofibers via metal dusting of a ternary NiMoW alloy in the atmosphere containing C2HCl3 and CH3CN vapors at 600 °C. The initial alloy was prepared by a co-precipitation technique. The carbon deposition was monitored gravimetrically. The early stages of the metal dusting process were studied in detail using scanning and transmission electron microscopies. It was established that the rapid disintegration of the microdispersed NiMoW alloy with the formation of nanosized particles catalyzing the growth of carbon filaments occurs within the first 5 min of the reaction. The presence of C2HCl3 vapors in the reaction medium was shown to be the urgent condition to provide efficient metal dusting. The effect of the CH3CN concentration in the trichloroethylene-containing reaction mixture on the carbon deposition is investigated. As observed, the CH3CN content noticeable affects the carbon yield (after 2 h of reaction). The dome-shaped dependence of carbon yield reaches its maximal value of ~ 200 g/g(cat) at a CH3CN concentration of 33 vol%. According to X-ray photoelectron spectroscopy, the obtained carbon filaments are functionalized with Cl (0.1–1.2 wt%), O (3–6 wt%), and N (0.5–1.3 wt%). The prepared carbon filaments possess a segmented secondary structure, which is typical for carbon nanomaterials derived via catalytic decomposition of chlorine-substituted hydrocarbons. Low-temperature nitrogen adsorption measurement revealed that the specific surface area of the N-containing samples varies in a range from 370 to 550 m2/g.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. George YL (2007) High-temperature corrosion and materials applications. ASM International, Ohio. https://doi.org/10.31399/asm.tb.htcma.t52080097

    Book  Google Scholar 

  2. Grabke HJ, Schütze M (2007) Metal dusting, carburisation and nitridation. Corrosion by carbon and nitrogen. Woodhead Publ, Sawston

    Book  Google Scholar 

  3. Chang JK, Tsai HY, Tsai WT (2008) A metal dusting process for preparing nano-sized carbon materials and the effects of acid post-treatment on their hydrogen storage performance. Int J Hydrog Energy 33:6734–6742

    Article  CAS  Google Scholar 

  4. Romero P, Oro R, Campos M, Torralba JM, Guzman VR (2015) Simultaneous synthesis of vertically aligned carbon nanotubes and amorphous carbon thin films on stainless steel. Carbon 82:31–38

    Article  CAS  Google Scholar 

  5. Taha TJ, Mojet BL, Lefferts L, Meer TH (2016) Effect of carbon nanofiber surface morphology on convective heat transfer from cylindrical surface: synthesis, characterization and heat transfer measurement. Int J Therm Sci 105:13–21

    Article  CAS  Google Scholar 

  6. Nerushev OA, Novopashin SA, Smovzh DV (2008) Synthesis of carbon nanofibers on an austenitic stainless steel. Nanotechnol Russ 3:7–8

    Article  Google Scholar 

  7. Li LL, Pan LJ, Li DW, Zhao Q, Ma H (2014) Field emission properties of carbon nanocoils synthesized on stainless steel. New Carbon Mater 29(1):34–40

    Article  CAS  Google Scholar 

  8. Tribolet P, Kiwi-Minsker L (2005) Carbon nanofibers grown on metallic filters as novel catalytic materials. Catal Today 102–103:15–22. https://doi.org/10.1016/j.cattod.2005.02.030

    Article  CAS  Google Scholar 

  9. Ren G, Pan X, Bayne S, Fan Z (2014) Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 71:94–101. https://doi.org/10.1016/j.carbon.2014.01.017

    Article  CAS  Google Scholar 

  10. Maubane MS, Bhoware SS, Shaikjee A, Coville NJ (2017) From carbon dots to multipods—The role of nickel particle shape and size. Diam Relat Mater 72:53–60. https://doi.org/10.1016/j.diamond.2016.12.023

    Article  CAS  Google Scholar 

  11. Sridhar D, Omanovic S, Meunier JL (2018) Direct growth of carbon nanofiber forest on nickel foam without any external catalyst. Diam Relat Mater 81:70–76. https://doi.org/10.1016/j.diamond.2017.11.011

    Article  CAS  Google Scholar 

  12. Ochoa-Fernandez E, Chen D, Yu Z, Totdal B, Ronning M, Holmen A (2005) Carbon nanofiber supported Ni catalyst: effects of nanostructure of supports and catalyst preparation. Catal Today 102–103:45–49. https://doi.org/10.1016/j.cattod.2005.02.005

    Article  CAS  Google Scholar 

  13. Ruiz-Cornejo JC, Vivo-Vilches JF, Sebastian D, Martinez-Huerta MV, Lazaro MJ (2021) Carbon nanofiber-supported tantalum oxides as durable catalyst for the oxygen evolution reaction in alkaline media. Renew Energy 178:307–317. https://doi.org/10.1016/j.renene.2021.06.076

    Article  CAS  Google Scholar 

  14. Netskina OV, Tayban ES, Moiseenko AP, Komova OV, Mukha SA, Simagina VI (2015) Removal of 1,2-dichlorobenzene from water emulsion using adsorbent-catalysts and its regeneration. J Hazard Mater 285:84–93. https://doi.org/10.1016/j.jhazmat.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  15. Gusain R, Kumar N, Ray SS (2020) Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 405:213111. https://doi.org/10.1016/j.ccr.2019.213111

    Article  CAS  Google Scholar 

  16. Fiorani A, Merino JP, Zanut A, Criado A, Valenti G, Prato M, Paolucci F (2019) Advanced carbon nanomaterials for electrochemiluminescent biosensor applications. Curr Opin Electrochem 16:66–74. https://doi.org/10.1016/j.coelec.2019.04.018

    Article  CAS  Google Scholar 

  17. Lebedeva MV, Gribov EN (2020) Electrochemical behavior and structure evolution of polyaniline/carbon composites in ionic liquid electrolyte. J Solid State Electrochem 24:739–751. https://doi.org/10.1007/s10008-020-04516-2

    Article  CAS  Google Scholar 

  18. Loh KP, Ho D, Chiu GNC, Leong DT, Pastorin G, Chow EKH (2018) Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater 30:1802368. https://doi.org/10.1002/adma.201802368

    Article  CAS  Google Scholar 

  19. Wang S, Lim JLG, Tan KH (2020) Performance of lightweight cementitious composite incorporating carbon nanofibers. Cement Concr Comp 109:103561. https://doi.org/10.1016/j.cemconcomp.2020.103561

    Article  CAS  Google Scholar 

  20. Rashad AM (2017) Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials. Constr Build Mater 153:81–101. https://doi.org/10.1016/j.conbuildmat.2017.07.089

    Article  CAS  Google Scholar 

  21. Wang T, Xu J, Meng B, Peng G (2020) Experimental study on the effect of carbon nanofiber content on the durability of concrete. Constr Build Mater 250:118891. https://doi.org/10.1016/j.conbuildmat.2020.118891

    Article  CAS  Google Scholar 

  22. Xin X, Liang M, Yao Z, Su L, Zhang J, Li P, Sun C, Jiang H (2020) Self-sensing behavior and mechanical properties of carbon nanotubes/epoxy resin composite for asphalt pavement strain monitoring. Constr Build Mater 257:119404. https://doi.org/10.1016/j.conbuildmat.2020.119404

    Article  CAS  Google Scholar 

  23. Santiago-Calvo M, Tirado-Mediavilla J, Rauhe JC, Jensen LR, Ruiz-Herrero JL, Villafane F, Rodriguez-Perez MA (2018) Evaluation of the thermal conductivity and mechanical properties of water blown polyurethane rigid foams reinforced with carbon nanofibers. Eur Polym J 108:98–106. https://doi.org/10.1016/j.eurpolymj.2018.08.051

    Article  CAS  Google Scholar 

  24. Podyacheva OY, Ismagilov ZR (2015) Nitrogen-doped carbon nanomaterials: to the mechanism of growth, electrical conductivity and application in catalysis. Catal Today 249:12–22. https://doi.org/10.1016/j.cattod.2014.10.033

    Article  CAS  Google Scholar 

  25. Suboch AN, Podyacheva OY (2021) Pd catalysts supported on bamboo-like nitrogen-doped carbon nanotubes for hydrogen production. Energies 14:1501. https://doi.org/10.3390/en14051501

    Article  CAS  Google Scholar 

  26. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  27. Pan G, Cao F, Zhang Y, Xia X (2020) N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors. J Mater Sci Technol 55:144–151. https://doi.org/10.1016/j.jmst.2019.10.004

    Article  Google Scholar 

  28. Kumar S, Srivastva AN (2021) Application of carbon nanomaterials decorated electrochemical sensor for analysis of environmental pollutants. IntechOpen Ltd, London. https://doi.org/10.5772/intechopen.96538

    Book  Google Scholar 

  29. Ruiz-Garcia C, Heras F, Calvo L, Alonso-Morales N, Rodriguez JJ, Gilarranz MA (2020) Improving the activity in hydrodechlorination of Pd/C catalysts by nitrogen doping of activated carbon supports. J Environ Chem Eng 8(2):103689. https://doi.org/10.1016/j.jece.2020.103689

    Article  CAS  Google Scholar 

  30. Maboya WK, Coville NJ, Mhlanga SD (2016) The synthesis of carbon nanomaterials using chlorinated hydrocarbons over a Fe-Co/CaCO3 catalyst. S Afr J Chem 69:15–26. https://doi.org/10.17159/0379-4350/2016/v69a3

    Article  CAS  Google Scholar 

  31. Podyacheva OY, Shmakov AN, Boronin AI, Kibis LS, Koscheev SV, Gerasimov EY, Ismagilov ZR (2013) A correlation between structural changes in a Ni-Cu catalyst during decomposition of ethylene/ammonia mixture and properties of nitrogen-doped carbon nanofibers. J Energy Chem 22:270–278

    Article  CAS  Google Scholar 

  32. Mishakov IV, Bauman YI, Shubin YV, Kibis LS, Gerasimov EY, Mel’gunov MS, Stoyanovskii VO, Korenev SV, Vedyagin AA (2020) Synthesis of nitrogen doped segmented carbon nanofibers via metal dusting of Ni-Pd alloy. Catal Today. https://doi.org/10.1016/j.cattod.2020.06.024

    Article  Google Scholar 

  33. Buyanov RA, Chesnokov VV (2006) On mechanism of formation of carbon nanofilaments during catalytic decomposition of hydrocarbons over iron-subgroup metals. Catal Ind 2:3–15

    Google Scholar 

  34. Nieto-Marquez A, Valverde JL, Keane MA (2009) Selective low temperature synthesis of carbon nanospheres via the catalytic decomposition of trichloroethylene. Appl Catal A 352(1–2):159–170. https://doi.org/10.1016/j.apcata.2008.10.006

    Article  CAS  Google Scholar 

  35. Tsai WT (2017) Fate of chloromethanes in the atmospheric environment: implications for human health, ozone formation and depletion, and global warming impacts. Toxics 5:23. https://doi.org/10.3390/toxics5040023

    Article  CAS  PubMed Central  Google Scholar 

  36. Rudnev AV, Lysakova AS, Plyusnin PE, Bauman YI, Shubin YV, Mishakov IV, Vedyagin AA, Buyanov RA (2014) Ni-Cu and Ni-Co alloys: synthesis, structure, and catalytic activity for the decomposition of chlorinated hydrocarbons. Inorg Mater 50(6):613–619. https://doi.org/10.1134/S0020168514060156

    Article  CAS  Google Scholar 

  37. Mishakov IV, Kutaev NV, Bauman YI, Shubin YV, Koskin AP, Serkova AN, Vedyagin AA (2020) Mechanochemical synthesis, structure, and catalytic activity of Ni-Cu, Ni-Fe, and Ni-Mo alloys in the preparation of carbon nanofibers during the decomposition of chlorohydrocarbons. J Struct Chem 61(5):811–821. https://doi.org/10.1134/S0022476620050133

    Article  Google Scholar 

  38. Bauman YI, Mishakov IV, Vedyagin AA, Rudnev AV, Plyusnin PE, Shubin YV, Buyanov RA (2017) Promoting effect of Co, Cu, Cr and Fe on activity of Ni-based alloys in catalytic processing of chlorinated hydrocarbons. Top Catal 60(1–2):171–177

    Article  CAS  Google Scholar 

  39. Shubin YV, Bauman YI, Plyusnin PE, Mishakov IV, Tarasenko MS, Melgunov MS, Stoyanovskii VO, Vedyagin AA (2021) Facile synthesis of triple Ni-Mo-W alloys and their catalytic properties in chemical vapor deposition of chlorinated hydrocarbons. J Alloys Compd 866:158778. https://doi.org/10.1016/j.jallcom.2021.158778

    Article  CAS  Google Scholar 

  40. Bauman YI, Rudneva YV, Mishakov IV, Plyusnin PE, Shubin YV, Korneev DV, Buyanov RA (2019) Effect of Mo on the catalytic activity of Ni-based self-organizing catalysts for processing of dichloroethane into segmented carbon nanomaterials. Heliyon 5:e02428. https://doi.org/10.1016/j.heliyon.2019.e02428

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brauer G (1978) Handbuch der Praparativen Anorganischen Chemie: in drei Banden/Bd 2, Ferdinand Enke, Stuttgart

  42. Nolze G, Kraus W (1998) Powder Diffr 13:256–259

    Google Scholar 

  43. Krumm S (1996) Mater Sci Forum 228–231:183–190. https://doi.org/10.4028/www.scientific.net/MSF.228-231.183

    Article  Google Scholar 

  44. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, London

    Google Scholar 

  45. Mishakov IV, Chesnokov VV, Buyanov RA, Pakhomov NA (2001) Decomposition of chlorinated hydrocarbons on iron-group metals. Kinet Catal 42:543–548. https://doi.org/10.1023/A:1010585808978

    Article  CAS  Google Scholar 

  46. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Eden Prairie, Minnesota

  47. Bauman YI, Kutaev NV, Plyusnin PE, Mishakov IV, Shubin YV, Vedyagin AA, Buyanov RA (2017) Catalytic behavior of bimetallic Ni–Fe systems in the decomposition of 1,2-dichloroethane. Effect of iron doping and preparation route. Reac Kinet Mech Cat 121:413–423. https://doi.org/10.1007/s11144-017-1180-4

    Article  CAS  Google Scholar 

  48. Mishakov IV, Bauman YI, Potylitsyna AR, Shubin YV, Plyusnin PE, Stoyanovskii VO, Vedyagin AA (2022) Catalytic properties of bulk (1–x)Ni–xW alloys in the decomposition of 1,2-Dichloroethane with the production of carbon nanomaterials. Kinet Catal 63:75–86. https://doi.org/10.1134/S0023158422010037

    Article  CAS  Google Scholar 

  49. Bauman YI, Shorstkaya YV, Mishakov IV, Plyusnin PE, Shubin YV, Korneev DV, Stoyanovskii VO, Vedyagin AA (2017) Catalytic conversion of 1,2-dichloroethane over Ni-Pd system into filamentous carbon material. Catal Today 293–294:23–32. https://doi.org/10.1016/j.cattod.2016.11.020

    Article  CAS  Google Scholar 

  50. Bauman YI, Rudneva YV, Mishakov IV, Plyusnin PE, Shubin YV, Vedyagin AA (2018) Synthesis of filamentary carbon material on a self-organizing Ni-Pt catalyst in the course of 1,2-dichloroethane decomposition. Kinet Catal 59:363–371. https://doi.org/10.1134/S0023158418030023

    Article  CAS  Google Scholar 

  51. Bauman YI, Mishakov IV, Vedyagin AA, Serkova AN, Gromov AA (2017) Kinetic features of the carbon erosion of a bulk NiCr alloy during the catalytic decomposition of 1,2-dichloroethane. Kinet Catal 58:448–454. https://doi.org/10.1134/S0023158417040036

    Article  CAS  Google Scholar 

  52. Nieto-Marquez A, Valverde JL, Keane MA (2007) Catalytic growth of structured carbon from chloro-hydrocarbons. Appl Catal A 332:237–246. https://doi.org/10.1016/j.apcata.2007.08.028

    Article  CAS  Google Scholar 

  53. Bauman YI, Lysakova AS, Rudnev AV, Mishakov IV, Shubin YV, Vedyagin AA, Buyanov RA (2014) Synthesis of nanostructured carbon fibers from chlorohydrocarbons over bulk Ni-Cr alloys. Nanotechnol Russ 9:380–385

    Article  CAS  Google Scholar 

  54. Bauman YI, Mishakov IV, Vedyagin AA, Dmitriev SV, MgM S, Buyanov RA (2012) Processing of organochlorine waste components on bulk metal catalysts. Catal Ind 4:261–266. https://doi.org/10.1134/S2070050412040034

    Article  Google Scholar 

  55. Bauman YI, Mishakov IV, Rudneva YV, Plyusnin PE, Shubin YV, Korneev DV, Vedyagin AA (2019) Formation of active sites of carbon nanofibers growth in self-organizing Ni-Pd catalyst during hydrogen-assisted decomposition of 1,2-dichloroethane. Ind Eng Chem Res 58(2):685–694. https://doi.org/10.1021/acs.iecr.8b02186

    Article  CAS  Google Scholar 

  56. Mishakov IV, Vedyagin AA, Bauman YI, Potylitsyna AR, Kadtsyna AS, Chesnokov VV, Nalivaiko AY, Gromov AA, Buyanov RA (2020) Two scenarios of dechlorination of the chlorinated hydrocarbons over nickel-alumina catalyst. Catalysts 10:1446. https://doi.org/10.3390/catal10121446

    Article  CAS  Google Scholar 

  57. Svintsitskiy DA, Kibis LS, Smirnov DA, Suboch AN, Stonkus OA, Podyacheva OY, Boronin AI, Ismagilov ZR (2018) Spectroscopic study of nitrogen distribution in N-doped carbon nanotubes and nanofibers synthesized by catalytic ethylene-ammonia decomposition. Appl Surf Sci 435:1273–1284. https://doi.org/10.1016/j.apsusc.2017.11.244

    Article  CAS  Google Scholar 

  58. Bauman Y, Kibis L, Mishakov I, Rudneva Y, Stoyanovskii V, Vedyagin A (2019) Synthesis and functionalization of filamentous carbon material via decomposition of 1,2-dichloroethane over self-organizing Ni-Mo catalyst. Mater Sci Forum 950:180–184. https://doi.org/10.4028/www.scientific.net/MSF.950.180

    Article  Google Scholar 

  59. Aoki K, Senga R, Suga Y, Totani K, Maki T, Itoh H, Shinokura K, Suenaga K, Watanabe T (2017) Structural analysis and oxygen reduction reaction activity in bamboolike nitrogen-doped carbon nanotubes containing localized nitrogen in nodal regions. Carbon 123:99–105. https://doi.org/10.1016/j.carbon.2017.03.087

    Article  CAS  Google Scholar 

  60. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  61. Neimark AV, Lin Y, Ravikovitch PI, Thommes M (2009) Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47:1617–1628. https://doi.org/10.1016/j.carbon.2009.01.050

    Article  CAS  Google Scholar 

  62. Gor GY, Thommes M, Cychosz KA, Neimark AV (2012) Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50:1583–1590. https://doi.org/10.1016/j.carbon.2011.11.037

    Article  CAS  Google Scholar 

  63. Mishakov IV, Vedyagin AA, Bauman YI, Shubin YV, Buyanov RA (2018) Synthesis of carbon nanofibers via catalytic chemical vapor deposition of halogenated hydrocarbons. In: Lee C-S (ed) Carbon nanofibers: synthesis, applications and performance. Nova Science Publ, New York

    Google Scholar 

  64. Evtushok VY, Podyacheva OY, Suboch AN, Maksimchuk NV, Stonkus OA, Kibis LS, Kholdeeva OA (2020) H2O2-based selective oxidations by divanadium-substituted polyoxotungstate supported on nitrogen-doped carbon nanomaterials. Catal Today 354:196–203. https://doi.org/10.1016/j.cattod.2019.03.060

    Article  CAS  Google Scholar 

  65. Pelech R, Milchert E, Wrobel R (2006) Adsorption dynamics of chlorinated hydrocarbons from multi-component aqueous solution onto activated carbon. J Hazard Mater 137:1479–1487. https://doi.org/10.1016/j.jhazmat.2006.04.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Characterization of the samples was carried out using the equipment of the Center of Collective Use ‘National Center of Catalysts Research’. Authors are grateful to A.N. Serkova for her help in SEM studies. TEM studies were performed in the Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center ‘Krasnoyarsk Science Center SB RAS’.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Project numbers AAAA-A21-121011390054-1 (ID: 0239-2021-0010) and 121031700315-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potylitsyna, A.R., Mishakov, I.V., Bauman, Y.I. et al. Metal dusting as a key route to produce functionalized carbon nanofibers. Reac Kinet Mech Cat 135, 1387–1404 (2022). https://doi.org/10.1007/s11144-022-02169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02169-y

Keywords

Navigation