Skip to main content
Log in

High performance of metal modified Pd catalyst for hydrodechlorination of chlorophenols to cyclohexanone

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic hydrodechlorination (HDC) of chlorophenols (CPs) to high-value and more eco-friendly cyclohexanone is attractive for the treatment of wastewater. The HDC performance of Pd catalyst can be improved by the modification with an appropriate element. La modification on Pd/CNTs catalyst, would provide solid Lewis acid, promote the active Pd dispersion, and induce the partial oxidation of Pd, minimizing the apparent activation energy of phenol during HDC greatly. A broad scope of CPs was degraded completely at mild conditions over Pd–La(1:1)/CNTs catalyst, with the deep hydrogenation of phenol (> 99.5%) and high selectivity of cyclohexanone (cyclohexanone yield > 68%). Moreover, this new La modified Pd/CNTs catalyst exhibited excellent catalytic stability, making it to be a promising candidate for hydrodechlorination of wastewater containing CPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Q, Zhou L, Chen Q, Mao M, Jiang W, Long Y, Fan G (2021) Oxygenated functional group-driven spontaneous fabrication of Pd nanoparticles decorated porous carbon nanosheets for electrocatalytic hydrodechlorination of 4-chlorophenol. J Hazard Mater 408:124456. https://doi.org/10.1016/j.jhazmat.2020.124456

    Article  CAS  PubMed  Google Scholar 

  2. Xiao M, Peng Y, Pang M, Hao B, Wang Y, Zhang Y, Liao Y, Mao H (2020) Recyclable heterogeneous Pd nanoparticles supported on plant polyphenol-modified gamma-Al2O3 for hydrodechlorination of 2,4-dichlorophenols. Bull Mater Sci 43:215. https://doi.org/10.1007/s12034-020-02214-3

    Article  CAS  Google Scholar 

  3. Yin L, Shen Z, Niu J, Chen J, Duan Y (2010) Degradation of pentachlorophenol and 2, 4-dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis. Environ Sci Technol 44:9117–9122. https://doi.org/10.1021/es1025432

    Article  CAS  PubMed  Google Scholar 

  4. Jin Z, Yu C, Wang X, Wan Y, Li D, Lu G (2009) Hydrodechlorination of chlorophenols at low temperature on a novel Pd catalyst. Chem Commun 29:4438–4440. https://doi.org/10.1039/b907846k

    Article  CAS  Google Scholar 

  5. Zhou S, Jin X, Sun F, Zhou H, Yang C, Xia C (2012) Combination of hydrodechlorination and biodegradation for the abatement of chlorophenols. Water Sci Technol 65:780–786. https://doi.org/10.2166/wst.2012.909

    Article  CAS  PubMed  Google Scholar 

  6. Xu J, Zhang S, Liu X, Bian F, Jiang H (2019) Rh/polymeric carbon nitride porous tubular catalyst: visible light enhanced chlorophenol hydrodechlorination in base-free aqueous medium. Environ Sci Technol 9:6938–6945. https://doi.org/10.1039/C9CY01816F

    Article  CAS  Google Scholar 

  7. Mahy JG, Tasseroul L, Tromme O, Lavigne B, Lambert SD (2019) Hydrodechlorination and complete degradation of chlorinated compounds with the coupled action of Pd/SiO2 and Fe/SiO2 catalysts: towards industrial catalyst synthesis conditions. J Environ Chem Eng 7:103014. https://doi.org/10.1016/j.jece.2019.103014

    Article  CAS  Google Scholar 

  8. Li R, Wang S, Hu Y, Chen H, Chen J, Chu C, Zheng J (2018) Pd supported on N-doped-ordered mesoporous carbons catalysts for selective hydrodechlorination of 4-chlorophenol. Chem Pap 72:2425–2432. https://doi.org/10.1007/s11696-018-0477-8

    Article  CAS  Google Scholar 

  9. Xiong J, Tian L, Cheng R (2021) Promoted catalytic hydrodechlorination for deep degradation of chlorophenols over Rh-La/SiO2 catalyst. J Hazard Mater 416:125913. https://doi.org/10.1016/j.jhazmat.2021.125913

    Article  CAS  PubMed  Google Scholar 

  10. Xia C, Liu Y, Zhou S, Yang C, Liu S, Xu J, Yu J, Chen J, Liang X (2009) The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater. J Hazard Mater 169:1029–1033. https://doi.org/10.1016/j.jhazmat.2009.04.043

    Article  CAS  PubMed  Google Scholar 

  11. Lan Y, Yang L, Zhang M, Zhang W, Wang S (2010) Microreactor of Pd nanoparticles immobilized hollow microspheres for catalytic hydrodechlorination of chlorophenols in water. Appl Mat Interface 2:127–133. https://doi.org/10.1021/am900622p

    Article  CAS  Google Scholar 

  12. Fang X, Fang D (2017) Performance of palladium–tin bimetallic catalysts supported on activated carbon for the hydrodechlorination of 4-chlorophenol. RSC Adv 7:40437–40443. https://doi.org/10.1039/C7RA07754H

    Article  CAS  Google Scholar 

  13. Ruiz-Garcia C, Heras F, Calvo L, Alonso-Morales N, Rodríguez JJ, Gilarranz MA (2020) Improving the activity in hydrodechlorination of Pd/C catalysts by nitrogen doping of activated carbon supports. J Environ Chem Eng 8:103689. https://doi.org/10.1016/j.jece.2020.103689

    Article  CAS  Google Scholar 

  14. Xiao M, Peng Y, Pang M, Hao B, Wang Y, Zhang Y, Liao Y, Mao H (2020) Recyclable heterogeneous Pd nanoparticles supported on plant polyphenol-modified γ-Al2O3 for hydrodechlorination of 2,4-dichlorophenols. Bull Mater Sci 43:215. https://doi.org/10.1007/s12034-020-02214-3

    Article  CAS  Google Scholar 

  15. Stoia M, Muntean C, Militaru B (2017) MnFe2O4 nanoparticles as new catalyst for oxidative degradation of phenol by peroxydisulfate. J Environ Sci 53:269–277. https://doi.org/10.1016/j.jes.2015.10.035

    Article  CAS  Google Scholar 

  16. Wang Q, Li H, Yang JH, Sun Q, Li Q, Yang J (2016) Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2. Appl Catal B Environ 192:182–192. https://doi.org/10.1016/j.apcatb.2016.03.047

    Article  CAS  Google Scholar 

  17. Jadbabaei N, Ye T, Shuai D, Zhang H (2017) Development of palladium-resin composites for catalytic hydrodechlorination of 4-chlorophenol. Appl Catal B Environ 205:576–586. https://doi.org/10.1016/j.apcatb.2016.12.068

    Article  CAS  Google Scholar 

  18. Xiong J, Ma Y (2019) Catalytic hydrodechlorination of chlorophenols in a continuous flow Pd/CNT–Ni foam micro reactor using formic acid as a hydrogen source. Catalysts 9:77. https://doi.org/10.3390/catal9010077

    Article  CAS  Google Scholar 

  19. Baeza JA, Calvo L, Rodríguez JJ, Gilarranz MA (2016) Catalysts based on large size-controlled Pd nanoparticles for aqueous-phase hydrodechlorination. Chem Eng J 294:40–48. https://doi.org/10.1016/j.cej.2016.02.107

    Article  CAS  Google Scholar 

  20. Zhang X, Qu Z, Jiang H, Liu Y, Chen R (2019) Selective catalytic hydrogenation of phenol to cyclohexanone over Pd@CN: role of CN precursor separation mode. Can J Chem Eng 97:1506–1514. https://doi.org/10.1002/cjce.23363

    Article  CAS  Google Scholar 

  21. Pizarro AH, Monsalvo VM, Molina CB, Mohedano AF, Rodríguez JJ (2015) Catalytic hydrodechlorination of p-chloro-m-cresol and 2,4,6-trichlorophenol with Pd and Rh supported on Al-pillared clays. Chem Eng J 273:363–370. https://doi.org/10.1016/j.cej.2015.03.072

    Article  CAS  Google Scholar 

  22. Zhang W, Wang F, Li X, Liu Y, Ma J (2016) Pd nanoparticles modified rod-like nitrogen-doped ordered mesoporous carbons for effective catalytic hydrodechlorination of chlorophenols. RSC Adv 6:27313–27319. https://doi.org/10.1039/C6RA00617E

    Article  CAS  Google Scholar 

  23. Dong Z, Dong C, Liu Y, Le X, Jin Z, Ma J (2015) Hydrodechlorination and further hydrogenation of 4-chlorophenol to cyclohexanone in water over Pd nanoparticles modified N-doped mesoporous carbon microspheres. Chem Eng J 270:215–222. https://doi.org/10.1016/j.cej.2015.02.045

    Article  CAS  Google Scholar 

  24. Alonso-Morales N, Ruiz-Garcia C, Palomar J, Heras F, Calvo L, Rodríguez JJ, Gilarranz MA (2017) Hollow nitrogen or boron-doped carbon submicrospheres with a porous shell. Preparation and application as supports for hydrodechlorination catalysts. Ind Eng Chem Res 27:7665–7674. https://doi.org/10.1021/acs.iecr.7b01183

    Article  CAS  Google Scholar 

  25. Guan Q, Zeng Y, Shen J, Chai XS, Gu J, Miao R, Li B, Ning P (2016) Selective hydrogenation of phenol by phosphotungstic acid modified Pd/Ce-AlOx catalyst in high-temperature water system. Chem Eng J 299:63–73. https://doi.org/10.1016/j.cej.2016.03.105

    Article  CAS  Google Scholar 

  26. Peng H, Ying J, Zhang J, Zhang X, Peng C, Rao C, Liu W, Zhang N, Wang X (2017) La-doped Pt/TiO2 as an efficient catalyst for room temperature oxidation of low concentration HCHO. Chin J Catal 38:39–47. https://doi.org/10.1016/S1872-2067(16)62532-9

    Article  CAS  Google Scholar 

  27. Peterson EJ, DeLaRiva AT, Lin S, Johnson RS, Guo H, Miller JT, Kwak JH, Peden CHF, Kiefer B, Allard LF, Ribeiro FH, Datye AK (2014) Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat Commun 5:4885. https://doi.org/10.1038/ncomms5885

    Article  CAS  PubMed  Google Scholar 

  28. Li K, Liu Q, Cheng H, Hu M, Zhang S (2021) Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM. Spectrochim Acta A 249:119286. https://doi.org/10.1016/j.saa.2020.119286

    Article  CAS  Google Scholar 

  29. Akinribide OJ, Obadele BA, Akinwamide SO, Ayeleru OO, Eizadjou M, Ringer SP, Olubambi PA (2020) Microstructural characterization and mechanical behaviours of TiN-graphite composites fabricated by spark plasma sintering. Int J Refract Met H 91:105253. https://doi.org/10.1016/j.ijrmhm.2020.105253

    Article  CAS  Google Scholar 

  30. Xiong J, Ma Y, Yang W, Zhong L (2018) Rapid, highly efficient and stable catalytic hydrodechlorination of chlorophenols over novel Pd/CNTs–Ni foam composite catalyst in continuous-flow. J Hazard Mater 355:89–95. https://doi.org/10.1016/j.jhazmat.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  31. Sikora E, Karacs G, Kocserha I, Muránszky G, Fiser B, Viskolcz B, Vanyorek L (2020) Hydrogenation of chlorate ions by commercial carbon supported palladium catalysts-a comparative study. React Kinet Mech Cat 131:129–137. https://doi.org/10.1007/s11144-020-01829-1

    Article  CAS  Google Scholar 

  32. Hu S, Yang G, Jiang H, Liu Y, Chen R (2018) Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): role of catalyst reduction method. Appl Surf Sci 435:649–655. https://doi.org/10.1016/j.apsusc.2017.11.181

    Article  CAS  Google Scholar 

  33. Liu H, Long L, Xu Z, Zheng S (2020) Pd-NCQD composite confined in SBA-15 as highly active catalyst for aqueous phase catalytic hydrodechlorination of 2,4-dichlorophenoxyacetic acid. Chem Eng J 400:125987. https://doi.org/10.1016/j.cej.2020.125987

    Article  CAS  Google Scholar 

  34. Shao Y, Xu Z, Wan H, Wan Y, Chen H, Zheng S, Zhu D (2011) Enhanced liquid phase catalytic hydrodechlorination of 2, 4-dichlorophenol over mesoporous carbon supported Pd catalysts. Catal Commun 12:1405–1409. https://doi.org/10.1016/j.catcom.2011.05.007

    Article  CAS  Google Scholar 

  35. Jørgensen CK, Berthou H (1972) Split photo-electron signals from the unique closed-shell cation lanthanum (III). Chem Phys Lett 13:186–189. https://doi.org/10.1016/0009-2614(72)85038-3

    Article  Google Scholar 

  36. Zhang W, Zhu Y, Niu S, Li Y (2011) A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts. J Mol Catal A Chem 335:71–81. https://doi.org/10.1016/j.molcata.2010.11.016

    Article  CAS  Google Scholar 

  37. Matam SK, Otal EH, Aguirre MH, Winkler A, Ulrich A, Rentsch D, Weidenkaff A, Ferri D (2012) Thermal and chemical aging of model three-way catalyst Pd/Al2O3 and its impact on the conversion of CNG vehicle exhaust. Catal Today 184:237–244. https://doi.org/10.1016/j.cattod.2011.09.030

    Article  CAS  Google Scholar 

  38. Yang X, Yang L, Lin S, Zhou R (2015) Investigation on properties of Pd/CeO2–ZrO2–Pr2O3catalysts withdifferent Ce/Zr molar ratios and its application for automotiveemission control. J Hazard Mater 285:182–189. https://doi.org/10.1016/j.jhazmat.2014.10.062

    Article  CAS  PubMed  Google Scholar 

  39. Boudart M, Hwang HS (1975) Solubility of hydrogen in small particles of palladium. J Catal 39:44–52. https://doi.org/10.1016/0021-9517(75)90280-8

    Article  CAS  Google Scholar 

  40. Boldrini DE, Sánchez MJF, Tonetto GM, Damiani DE (2012) Monolithic stirrer reactor: performance in the partial hydrogenation of sunflower oil. Ind Eng Chem Res 51:12222–12232. https://doi.org/10.1021/ie3013727

    Article  CAS  Google Scholar 

  41. Ruiz-García C, Heras F, Calvo L, Alonso-Morales N, Rodríguez JJ, Gilarranz MA (2019) N-doped CMK-3 carbons supporting palladium nanoparticles as catalysts for hydrodechlorination. Ind Eng Chem Res 58:4355–4363. https://doi.org/10.1021/acs.iecr.8b06084

    Article  CAS  Google Scholar 

  42. Díaz E, Casas JA, Mohedano ÁF, Calvo L, Gilarranz MA, Rodríguez JJ (2009) Kinetics of 4-chlorophenol hydrodechlorination with alumina and activated carbon-supported Pd and Rh catalysts. Ind Eng Chem Res 48:3351–3358. https://doi.org/10.1021/ie801462b

    Article  CAS  Google Scholar 

  43. Isaifan RJ, Ntais S, Couillard M, Baranova EA (2015) Size-dependent activity of Pt/yttria-stabilized zirconia catalyst for ethylene and carbon monoxide oxidation in oxygen-free gas environment. J Catal 324:32–40. https://doi.org/10.1016/j.jcat.2015.01.010

    Article  CAS  Google Scholar 

  44. Mahata N, Vishwanathan V (1999) Gas phase hydrogenation of phenol over supported palladium catalysts. Catal Today 49:65–69. https://doi.org/10.1016/S0920-5861(98)00409-X

    Article  CAS  Google Scholar 

  45. Keane MA (2011) Supported transition metal catalysts for hydrodechlorination reactions. ChemCatChem 3:800–821. https://doi.org/10.1002/cctc.201000432

    Article  CAS  Google Scholar 

  46. Coq B, Ferrat G, Figueras F (1986) Conversion of chlorobenzene over palladium and rhodium catalysts of widely varying dispersion. J Catal 101:434–445. https://doi.org/10.1016/0021-9517(86)90271-X

    Article  CAS  Google Scholar 

  47. Chary KVR, Naresh D, Vishwanathan V, Sadakane M, Ueda W (2007) Vapour phase hydrogenation of phenol over Pd/C catalysts: a relationship between dispersion, metal area and hydrogenation activity. Catal Commun 8:471–477. https://doi.org/10.1016/j.catcom.2006.07.017

    Article  CAS  Google Scholar 

  48. Tarakeshwar P, Lee JY, Kim KS (1998) Role of Lewis acid (AlCl3)-aromatic ring interactions in Friedel-Craft’s reaction: an ab initio study. J Phys Chem A 102:2253–2255. https://doi.org/10.1021/jp9807322

    Article  CAS  Google Scholar 

  49. Liu H, Jiang T, Han B, Liang S, Zhou Y (2009) Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science 326:1250–1252. https://doi.org/10.1126/science.1179713

    Article  CAS  PubMed  Google Scholar 

  50. Golubina EV, Lokteva ES, Kavalerskaya NE, Maslakov KI (2020) Effect of calcination temperature on the efficiency of Ni/Al2O3 in the hydrodechlorination reaction. Kinet Catal 61:444–459. https://doi.org/10.1134/S002315842003012X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China [Grant Nos. 21463030] and Zunyi City Science and Technology Department of China [Grant No. ZSKHSZ (2018)11].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xiong.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2313 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Cheng, R., Li, L. et al. High performance of metal modified Pd catalyst for hydrodechlorination of chlorophenols to cyclohexanone. Reac Kinet Mech Cat 135, 741–753 (2022). https://doi.org/10.1007/s11144-022-02157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02157-2

Keywords

Navigation