Skip to main content
Log in

Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This study provides an integrated assessment of hydrogen peroxide (H2O2), potassium peroxymonosulfate (PMS), and sodium percarbonate (PCA) performance in Albendazole (ABZ) degradation during advanced oxidation processes. The experiments were conducted in a UV photoreactor (16 mW m−2). Initially, H2O2 was tested as a model oxidant using ABZ/oxidant (ABZ/Ox) molar ratio 1:2. The removal achieved with and without UV radiation were 85% and 40% ABZ. With PCA and PMS (ABZ/Ox molar ratio 1:2), 100% ABZ removal was observed at 15 min. A kinetic study was conducted because of the faster ABZ removal (ABZ/Ox = 1:1, 1:0.5, and 1:0.1). The ABZ/PCA process (using ABZ/Ox 1:1) achieved 40% and 43% ABZ removal after 15 min, with and without UV radiation, respectively. Whit ABZ/PCA 1:0.5, no degradation was observed. In contrast, with ABZ/PMS 1:0.5, 100% degradation was achieved. These results suggest a synergism between the sulfate and carbonate radicals with the hydroxyls. The pseudo-second order kinetic model was fair to predict experimental results showing R2 ≥ 0.98 for all the trials. This study provides a technical guideline for using these oxidants in the degradation of compounds with chemical structures like ABZ.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roé-Sosa A, Amábilis-Sosa LE, Reyes-Prado MA, Ortiz-Marin AD (2021) Potential reuse of wastewater containing recalcitrant organic compounds, treated by advanced oxidation processes. Integr Environ Assess Manag 17:651–653. https://doi.org/10.1002/ieam.4407

    Article  CAS  Google Scholar 

  2. Ljubas D, Čizmić M, Vrbat K et al (2018) Albendazole degradation possibilities by UV-based advanced oxidation processes. Int J Photoenergy 2018:1–6. https://doi.org/10.1155/2018/6181747

    Article  CAS  Google Scholar 

  3. Belew S, Suleman S, Wynendaele E et al (2021) Environmental risk assessment of the anthelmintic albendazole in Eastern Africa, based on a systematic review. Environ Pollut 269:116106. https://doi.org/10.1016/j.envpol.2020.116106

    Article  CAS  PubMed  Google Scholar 

  4. da Silva Anacleto S, de Oliveira HL, da Silva ATM et al (2017) Preparation of an organic–inorganic hybrid molecularly imprinted polymer for effective removal of albendazole sulfoxide enantiomers from aqueous medium. J Environ Chem Eng 5:6179–6187. https://doi.org/10.1016/j.jece.2017.11.049

    Article  CAS  Google Scholar 

  5. Porto RS, Rodrigues-Silva C, Schneider J, Rath S (2019) Benzimidazoles in wastewater: analytical method development, monitoring and degradation by photolysis and ozonation. J Environ Manag 232:729–737. https://doi.org/10.1016/j.jenvman.2018.11.121

    Article  CAS  Google Scholar 

  6. Čizmić M, Ljubas D, Škorić I et al (2018) Photolytic and photocatalytic degradation of febantel in aqueous media. Desalin Water Treat 104:294–303. https://doi.org/10.5004/dwt.2018.21915

    Article  CAS  Google Scholar 

  7. Periša M, Babić S (2014) Simultaneous determination of pharmaceuticals and some of their metabolites in wastewaters by high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 37:1289–1296. https://doi.org/10.1002/jssc.201301135

    Article  CAS  PubMed  Google Scholar 

  8. Roé-Sosa A, Rangel-Peraza JG, Rodríguez-Mata AE et al (2019) Emulating natural wetlands oxygen conditions for the removal of N and P in agricultural wastewaters. J Environ Manag 236:351–357. https://doi.org/10.1016/j.jenvman.2019.01.114

    Article  CAS  Google Scholar 

  9. Rodríguez-Mata AE, Amabilis-Sosa LE, Roé-Sosa A et al (2019) Quantification of recalcitrant organic compounds during their removal test by a novel and economical method based on chemical oxygen demand analysis. Korean J Chem Eng 36:423–432. https://doi.org/10.1007/s11814-018-0203-9

    Article  CAS  Google Scholar 

  10. Khatri J, Nidheesh PV, Anantha Singh TS, Suresh Kumar M (2018) Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem Eng J 348:67–73. https://doi.org/10.1016/j.cej.2018.04.074

    Article  CAS  Google Scholar 

  11. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003. https://doi.org/10.1016/j.ultsonch.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Xu J, Liu T et al (2020) Selective oxidation of tetracyclines by peroxymonosulfate in livestock wastewater: kinetics and non-radical mechanism. J Hazard Mater 386:121656. https://doi.org/10.1016/j.jhazmat.2019.121656

    Article  CAS  PubMed  Google Scholar 

  13. Babaei AA, Ghanbari F (2016) COD removal from petrochemical wastewater by UV/hydrogen peroxide, UV/persulfate and UV/percarbonate: biodegradability improvement and cost evaluation. J Water Reuse Desalin 6:484–494. https://doi.org/10.2166/wrd.2016.188

    Article  CAS  Google Scholar 

  14. Gao J, Duan X, O’Shea K, Dionysiou DD (2020) Degradation and transformation of bisphenol A in UV/sodium percarbonate: dual role of carbonate radical anion. Water Res 171:115394. https://doi.org/10.1016/j.watres.2019.115394

    Article  CAS  PubMed  Google Scholar 

  15. Mosteo R, Gumy D, Pulgarin C (2008) Coupled photo-Fenton-biological system: effect of the Fenton parameters such as residual H2O2, Fe2+ and pH on the efficiency of biological process. Water Sci Technol 58:1679–1685. https://doi.org/10.2166/wst.2008.538

    Article  PubMed  Google Scholar 

  16. Cedillo-Herrera CIG, Roé-Sosa A, Pat-Espadas AM et al (2020) Efficient malathion removal in constructed wetlands coupled to UV/H2O2 pretreatment. Appl Sci. https://doi.org/10.3390/APP10155306

    Article  Google Scholar 

  17. Ortiz-Marin AD, Amabilis-Sosa LE, Bandala ER et al (2020) Using sequentially coupled UV/H2O2-biologic systems to treat industrial wastewater with high carbon and nitrogen contents. Process Saf Environ Prot 137:192–199. https://doi.org/10.1016/j.psep.2020.02.020

    Article  CAS  Google Scholar 

  18. Toor R, Mohseni M (2007) UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere 66:2087–2095. https://doi.org/10.1016/j.chemosphere.2006.09.043

    Article  CAS  PubMed  Google Scholar 

  19. Venancio WAL, Rodrigues-Silva C, Spina M et al (2020) Degradation of benzimidazoles by photoperoxidation: metabolites detection and ecotoxicity assessment using Raphidocelis subcapitata microalgae and Vibrio fischeri. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11294-x

    Article  Google Scholar 

  20. Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J 310:41–62. https://doi.org/10.1016/j.cej.2016.10.064

    Article  CAS  Google Scholar 

  21. Afonso-Olivares C, Fernández-Rodríguez C, Ojeda-González RJ et al (2016) Estimation of kinetic parameters and UV doses necessary to remove twenty-three pharmaceuticals from pre-treated urban wastewater by UV/H2O2. J Photochem Photobiol A 329:130–138. https://doi.org/10.1016/j.jphotochem.2016.06.018

    Article  CAS  Google Scholar 

  22. Cai QQ, Wu MY, Li R et al (2020) Potential of combined advanced oxidation—biological process for cost-effective organic matters removal in reverse osmosis concentrate produced from industrial wastewater reclamation: screening of AOP pre-treatment technologies. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123419

    Article  Google Scholar 

  23. Menon P, Anantha Singh TS, Pani N, Nidheesh PV (2020) Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128739

    Article  PubMed  Google Scholar 

  24. Vázquez-López M, Amabilis-Sosa LE, Moeller-Chávez GE et al (2018) Evaluation of the ultrasound effect on treated municipal wastewater. Environ Technol (United Kingdom) 3330:1–10. https://doi.org/10.1080/09593330.2018.1481889

    Article  CAS  Google Scholar 

  25. Yuan R, Ramjaun SN, Wang Z, Liu J (2011) Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater 196:173–179. https://doi.org/10.1016/j.jhazmat.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  26. Gong F, Wang L, Li D et al (2015) An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal. Chem Eng J 267:102–110. https://doi.org/10.1016/j.cej.2015.01.010

    Article  CAS  Google Scholar 

  27. Gągol M, Przyjazny A, Boczkaj G (2018) Wastewater treatment by means of advanced oxidation processes based on cavitation—a review. Chem Eng J 338:599–627. https://doi.org/10.1016/j.cej.2018.01.049

    Article  CAS  Google Scholar 

  28. Caianelo M, Rodrigues-Silva C, Maniero MG, Guimarães JR (2017) Antimicrobial activity against Gram-positive and Gram-negative bacteria during gatifloxacin degradation by hydroxyl radicals. Environ Sci Pollut Res 24:6288–6298. https://doi.org/10.1007/s11356-016-6972-y

    Article  CAS  Google Scholar 

  29. Kozak J, Włodarczyk-Makuła M (2018) The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civ Environ Eng Rep 28:124–139. https://doi.org/10.2478/ceer-2018-0024

    Article  Google Scholar 

  30. De CRG, Gimeno O, Rivas J (2012) Percarbonate as a hydrogen peroxide carrier in soil remediation processes. Environ Eng Sci. https://doi.org/10.1089/ees.2011.0237

    Article  Google Scholar 

  31. Patra SG, Mizrahi A, Meyerstein D (2020) The role of carbonate in catalytic oxidations. Acc Chem Res 53:2189–2200. https://doi.org/10.1021/acs.accounts.0c00344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yue-hua Z, Chun-mei X, Chang-hong G (2011) Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater. Procedia Environ Sci 10:1668–1673. https://doi.org/10.1016/j.proenv.2011.09.262

    Article  CAS  Google Scholar 

  33. Ike IA, Linden KG, Orbell JD, Duke M (2018) Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem Eng J 338:651–669. https://doi.org/10.1016/j.cej.2018.01.034

    Article  CAS  Google Scholar 

  34. Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517. https://doi.org/10.1016/j.cej.2017.11.059

    Article  CAS  Google Scholar 

  35. Liu T, Zhang D, Yin K et al (2020) Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation. Chem Eng J 388:124264. https://doi.org/10.1016/j.cej.2020.124264

    Article  CAS  Google Scholar 

  36. Yang Y, Banerjee G, Brudvig GW et al (2018) Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environ Sci Technol 52:5911–5919. https://doi.org/10.1021/acs.est.8b00735

    Article  CAS  PubMed  Google Scholar 

  37. Hayyan M, Hashim MA, Alnashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085. https://doi.org/10.1021/acs.chemrev.5b00407

    Article  CAS  PubMed  Google Scholar 

  38. Ma J, Zhou H, Yan S, Song W (2019) Kinetics studies and mechanistic considerations on the reactions of superoxide radical ions with dissolved organic matter. Water Res 149:56–64. https://doi.org/10.1016/j.watres.2018.10.081

    Article  CAS  PubMed  Google Scholar 

  39. Yi Q, Ji J, Shen B et al (2019) Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic fenton reaction with enhanced REDOX activity in the environment. Environ Sci Technol 53:9725–9733. https://doi.org/10.1021/acs.est.9b01676

    Article  CAS  PubMed  Google Scholar 

  40. Parker KJ (2013) Correspondence: apodization and windowing functions. IEEE Trans Ultrason Ferroelectr Freq Control 60:1263–1271. https://doi.org/10.1109/TUFFC.2013.2691

    Article  PubMed  Google Scholar 

  41. Chapra SC, Canale RP (2006) Numerical methods for engineers. New York, USA.

  42. Ma J, Yang X, Jiang X et al (2020) Percarbonate persistence under different water chemistry conditions. Chem Eng J 389:123422. https://doi.org/10.1016/j.cej.2019.123422

    Article  CAS  Google Scholar 

  43. Siciliano A, Russo D, Spasiano D et al (2019) Chronic toxicity of treated and untreated aqueous solutions containing imidazole-based ionic liquids and their oxydized by-products. Ecotoxicol Environ Saf 180:466–472. https://doi.org/10.1016/j.ecoenv.2019.05.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Alejandro D. Ortiz-Marin acknowledges the resources provided from project TecNM-9106.20P. Also, Leonel E. Amabilis-Sosa acknowledge the project Cátedra CONACyT Ref. 2572. In addition, the authors thank Ms. Sachiko Sueki and Dr. Xuelian Bai (DRI) for supporting sample analysis by HPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonel E. Amabilis-Sosa.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 11829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Marin, A.D., Bandala, E.R., Ramírez, K. et al. Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reac Kinet Mech Cat 135, 639–654 (2022). https://doi.org/10.1007/s11144-021-02152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02152-z

Keywords

Navigation