Skip to main content
Log in

Improved stability of catalytic coatings based on Zn-doped titania for selective hydrogenation of a triple bond in a microcapillary reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of mixed oxides TixZn1−xO1+x was synthesized by the sol–gel method using Pluronic F127 as a template and employed as a matrix for the synthesis of PdZn catalytic coating in selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY). The effect of Zn/Ti molar ratio on the porous and crystalline structure of the matrix was discussed. The PdZn catalytic coating based on Zn-doped titania demonstrated a higher selectivity compared to undoped titania and retained a high selectivity of 98% in a continuous reaction flow up to 168 h, which is due to the resistance of the PdZn alloy to decomposition under the reaction conditions. Holding in an oxidizing atmosphere were accompanied by a decrease in selectivity from 98 to 95%; the reaction parameters were restored in the reaction stream of a solution of MBY in methanol and hydrogen for 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonrath W, Eggersdorfer M, Netscher T (2007) Catalysis in the industrial preparation of vitamins and nutraceuticals. Catal Today 121:45–57. https://doi.org/10.1016/j.cattod.2006.11.021

    Article  CAS  Google Scholar 

  2. Hessel V, Kralisch D, Kockmann N et al (2013) Novel process windows for enabling, accelerating, and uplifting flow chemistry. Chemsuschem 6:746–789. https://doi.org/10.1002/cssc.201200766

    Article  CAS  PubMed  Google Scholar 

  3. Roberge DM, Ducry L, Bieler N et al (2005) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol 28:318–323. https://doi.org/10.1002/ceat.200407128

    Article  CAS  Google Scholar 

  4. Rebrov EV, Klinger EA, Berenguer-Murcia A et al (2009) Selective hydrogenation of 2-methyl-3-butyne-2-ol in a wall-coated capillary microreactor with a Pd25Zn75/TiO2 catalyst. Org Process Res Dev 13:991–998. https://doi.org/10.1021/op900085b

    Article  CAS  Google Scholar 

  5. Rebrov EV, Berenguer-Murcia A, Skelton HE et al (2009) Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports. Lab Chip 9:503–506. https://doi.org/10.1039/B815716B

    Article  CAS  PubMed  Google Scholar 

  6. Cherkasov N, Ibhadon AO, Rebrov EV (2015) Novel synthesis of thick wall coatings of titania supported Bi poisoned Pd catalysts and application in selective hydrogenation of acetylene alcohols in capillary microreactors. Lab Chip 15:1952–1960. https://doi.org/10.1039/C4LC01066C

    Article  CAS  PubMed  Google Scholar 

  7. Cherkasov N, Ibhadon AO, McCue AJ et al (2015) Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Appl Catal A Gen 497:22–30. https://doi.org/10.1016/j.apcata.2015.02.038

    Article  CAS  Google Scholar 

  8. Cherkasov N, Ibhadon AO, Rebrov EV (2016) Solvent-free semihydrogenation of acetylene alcohols in a capillary reactor coated with a Pd-Bi/TiO2 catalyst. Appl Catal A Gen 515:108–115. https://doi.org/10.1016/j.apcata.2016.01.019

    Article  CAS  Google Scholar 

  9. Cherkasov N, Al-Rawashdeh M, Ibhadon AO, Rebrov EV (2016) Scale up study of capillary microreactors in solvent-free semihydrogenation of 2-methyl-3-butyn-2-ol. Catal Today 273:205–212. https://doi.org/10.1016/j.cattod.2016.03.028

    Article  CAS  Google Scholar 

  10. Cherkasov N, Bai Y, Rebrov E (2017) Process intensification of alkynol semihydrogenation in a tube reactor coated with a Pd/ZnO catalyst. Catalysts 7:1–16. https://doi.org/10.3390/catal7120358

    Article  CAS  Google Scholar 

  11. Tew MW, Emerich H, Van Bokhoven JA (2011) Formation and characterization of PdZn alloy: a very selective catalyst for alkyne semihydrogenation. J Phys Chem C 115:8457–8465. https://doi.org/10.1021/jp1103164

    Article  CAS  Google Scholar 

  12. Okhlopkova LB, Cherepanova SV, Prosvirin IP et al (2018) Semi-hydrogenation of 2-methyl-3-butyn-2-ol on Pd-Zn nanoalloys prepared by polyol method: effect of composition and heterogenization. Appl Catal A 549:245–253. https://doi.org/10.1016/j.apcata.2017.10.005

    Article  CAS  Google Scholar 

  13. Engels V, Jefferson DA, Benaskar F et al (2011) Nanoparticulate PdZn—pathways towards the synthetic control of nanosurface properties. Nanotechnology 22:205701–205710

    Article  PubMed  Google Scholar 

  14. Okhlopkova LB, Kerzhentsev MA, Tuzikov FV et al (2012) Palladium-Zinc catalysts on mesoporous titania prepared by colloid synthesis. II. Synthesis and characterization of PdZn/TiO2 coating on inner surface of fused silica capillary. J Nanoparticle Res 14:1–15. https://doi.org/10.1007/s11051-012-1088-x

    Article  CAS  Google Scholar 

  15. Habibi MH, Mikhak M (2012) Titania/zinc oxide nanocomposite coatings on glass or quartz substrate for photocatalytic degradation of direct blue 71. Appl Surf Sci 258:6745–6752. https://doi.org/10.1016/j.apsusc.2012.03.042

    Article  CAS  Google Scholar 

  16. Chen X, Mao S (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. https://doi.org/10.1021/cr0500535

    Article  CAS  PubMed  Google Scholar 

  17. Hoffmann RM, Martin TS, Choi W, Bahnemann WD (2002) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    Article  Google Scholar 

  18. Okhlopkova LB, Kerzhentsev MA, Ismagilov ZR (2019) Development, synthesis, and study of sanomaterials of titania doped by zirconium for selective hydrogenation of 2-methyl-3-butyn-2-ol in a microcapillary reactor. Kinet Catal 60:474–483. https://doi.org/10.1134/S0023158419040116

    Article  CAS  Google Scholar 

  19. Okhlopkova LB, Prosvirin IP, Kerzhentsev MA, Ismagilov ZR (2021) Capillary microreactor with PdZn/(Ti, Ce)O2 coating for selective hydrogenation of 2-methyl-3-butyn-2-ol. Chem Eng Process Process Intensif 159:108240. https://doi.org/10.1016/j.cep.2020.108240

    Article  CAS  Google Scholar 

  20. Dominguez-Dominguez S, Berenguer-Murcia A, Cazorla-Amoros D, Linares-Solano A (2006) Semihydrogenation of phenylacetylene catalyzed by metallic nanoparticles containing noble metals. J Catal 243:74–81. https://doi.org/10.1016/j.jcat.2006.06.027

    Article  CAS  Google Scholar 

  21. Semagina N, Grasemann M, Xanthopoulos N et al (2007) Structured catalyst of Pd/ZnO on sintered metal fibers for 2-methyl-3-butyn-2-ol selective hydrogenation. J Catal 251:213–222. https://doi.org/10.1016/j.jcat.2007.06.028

    Article  CAS  Google Scholar 

  22. Duca D, Liotta LF, Deganello G (1995) Selective hydrogenation of phenylacetylene on pumice-supported palladium catalysts. J Catal 154:69–79. https://doi.org/10.1006/jcat.1995.1148

    Article  CAS  Google Scholar 

  23. Okhlopkova LB, Kerzhentsev MA, Ismagilov ZR (2018) Coating the internal surface of a capillary microreactor for the selective hydrogenation of 2-methyl-3-butyn-2-ol by PdxZn1x/TiO2 catalysts. A kinetic study Kinet Catal 59:450–458. https://doi.org/10.1134/S0023158418040092

    Article  CAS  Google Scholar 

  24. Liu R, Ye H, Xiong X, Liu H (2010) Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater Chem Phys 121:432–439. https://doi.org/10.1016/j.matchemphys.2010.02.002

    Article  CAS  Google Scholar 

  25. Chai YL, Chang YS, Chen GJ, Hsiao YJ (2008) The effects of heat-treatment on the structure evolution and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process. Mater Res Bull 43:1066–1073. https://doi.org/10.1016/j.materresbull.2007.06.002

    Article  CAS  Google Scholar 

  26. Mohammadi MR, Fray DJ (2010) Low temperature nanostructured zinc titanate by an aqueous particulate sol-gel route: optimisation of heat treatment condition based on Zn: Ti molar ratio. J Eur Ceram Soc 30:947–961. https://doi.org/10.1016/j.jeurceramsoc.2009.09.031

    Article  CAS  Google Scholar 

  27. Mandić V, Kurajica S, Očko T (2020) Development of phases in the sol-gel derived mixed-metal-oxide (Al2O3–TiO2–ZnO) functional sorbent material. Ceram Int 46:29388–29401. https://doi.org/10.1016/j.ceramint.2020.05.209

    Article  CAS  Google Scholar 

  28. Sing KS (1985) Reporting physisorption DATA for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  29. Okhlopkova LB, Kerzhentsev MA, Ismagilov ZR (2018) Internal surface coating of a capillary microreactor for the selective hydrogenation of 2-methyl-3-butyn-2-ol using a PdZn/TiO2 catalyst. The effect of the catalyst’s activation conditions on its catalytic properties. Kinet Catal 59:347–356. https://doi.org/10.1134/S0023158418030163

    Article  CAS  Google Scholar 

  30. Nikoshvili LZ, Makarova AS, Lyubimova NA et al (2015) Kinetic study of selective hydrogenation of 2-methyl-3-butyn-2-ol over Pd-containing hypercrosslinked polystyrene. Catal Today 256:231–240. https://doi.org/10.1016/j.cattod.2015.02.033

    Article  CAS  Google Scholar 

  31. Wowsnick G, Teschner D, Armbrüster M et al (2014) Surface dynamics of the intermetallic catalyst Pd2Ga, Part II—reactivity and stability in liquid-phase hydrogenation of phenylacetylene. J Catal 309:221–230. https://doi.org/10.1016/j.jcat.2013.09.018

    Article  CAS  Google Scholar 

  32. Doyle AM, Shaikhutdinov SK, Jackson SD, Freund HJ (2003) Hydrogenation on metal surfaces: why are nanoparticles more active than single crystals? Angew Chemie—Int Ed 42:5240–5243. https://doi.org/10.1002/anie.200352124

    Article  CAS  Google Scholar 

  33. Aramendía MA, Borau V, Jiménez C, Marinas JM, Sempere ME, Urbano FJ (1990) Optimization of the selective semi-hydrogenation of phenylacetylene with supported palladium systems. Appl Catalysis 63(1):375–389. https://doi.org/10.1016/S0166-9834(00)81726-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (Project 0239-2021-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila B. Okhlopkova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okhlopkova, L.B., Kerzhentsev, M.A. & Ismagilov, Z.R. Improved stability of catalytic coatings based on Zn-doped titania for selective hydrogenation of a triple bond in a microcapillary reactor. Reac Kinet Mech Cat 135, 389–402 (2022). https://doi.org/10.1007/s11144-021-02146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02146-x

Keywords

Navigation