Skip to main content
Log in

Reaction kinetics and mechanism of the catalytic oxidation of propane over Co–ZSM-5 zeolites

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The complete oxidation of propane over Co-containing ZSM-5 zeolites having different Si/Al ratios (23, 40 and 100) was studied. It was observed that the applied preparation procedure ensured a fine dispersion of Co3O4. Regarding the surface composition, both Co2+ and Co3+ were present on the surface. The oxo cations containing Co2+ and/or CoOx stabilized inside the zeolite and Co2+ ions at the exchange sites are also formed. It was found out that the complete oxidation of propane proceeds at catalyst bed temperatures above 240 °C and the needed temperature to achieve 30% conversion of propane (T30) at gas hourly space velocity of 100,000 h−1 is 314–338 °C. The high catalytic activity of Co–ZSM-5 (Si/Al = 23) is explained by the high reducibility as result of lower interaction of the cobalt oxide with the support. Based on the study of the reaction kinetics, the mechanism of Mars–van Krevelen was considered to be the most probable. Based on the observed activity of the prepared Co–ZSM-5 materials, one could expect further development of these new catalytic systems for real application in the reduction of greenhouse gas emissions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beauchet R, Mojoin J, Batonneau-Gener I, Magnoux P (2010) Catalytic oxidation of VOCs on NaX zeolite: mixture effect with isopropanol and o-xylene. Appl Catal B 100:91–96

    Article  CAS  Google Scholar 

  2. Ozcelik Z, Pozan Soylu GS, Boz I (2009) Catalytic combustion of toluene over Mn, Fe and Co-exchanged clinoptilolite support. Chem Eng J 155:94–100

    Article  Google Scholar 

  3. Solsona B, Aylon E, Murillo R, Mastral AM, Monzonis A, Agouram S, Davies TE, Taylor SH, Garcia TJ (2011) Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. J Hazard Mater 187:544–552

    Article  CAS  PubMed  Google Scholar 

  4. Berenjian A, Chan N, Malmiri HJ (2012) Volatile organic compounds removal methods: a review. Am J Biochem Biotechnol 8:220–229

    Article  CAS  Google Scholar 

  5. Faisal IK, KrG A (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545

    Article  Google Scholar 

  6. Yu L, Wang L, Xu W, Chen L, Fu M, Wu J, Ye D (2018) Adsorption of VOCs on reduced graphene oxide. J Environ Sci 67:171–178

    Article  CAS  Google Scholar 

  7. Kim K-J, Ahn H-G (2012) The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater 152:78–83

    Article  CAS  Google Scholar 

  8. Burgess JE, Parsons SA, Stuetz RM (2001) Development in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63

    Article  CAS  PubMed  Google Scholar 

  9. Lu Y, Liu J, Lu B, Jiang A, Wan C (2010) Study on the removal of indoor VOCs using biotechnology. J Hazard Mater 182:204–209

    Article  CAS  PubMed  Google Scholar 

  10. Gupta VK, Verma N (2002) Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chem Eng Sci 57:2679–2696

    Article  CAS  Google Scholar 

  11. Liu L, Chakma A, Feng XS, Lawless D (2009) Separation of VOCs from N2 using poly(ether block amide) membranes. Can J Chem Eng 87:456–465

    Article  CAS  Google Scholar 

  12. Zhang L, Weng H-X, Chen H-L, Gao C-J (2002) Removal of volatile organic compounds (VOCs) with membrane separation techniques. J Environ Sci 14:181–187

    CAS  Google Scholar 

  13. Yan Y, Wang L, Zhang H (2014) Catalytic combustion of volatile organic compounds over Co/ZSM-5 coated on stainless steel fibers. Chem Eng J 255:195–204

    Article  CAS  Google Scholar 

  14. Huang H, Xu Y, Feng Q, Leung DYC (2015) Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol 5:2649–2669

    Article  CAS  Google Scholar 

  15. Song S, Zhang S, Zhang X, Verma P, Wen M (2020) Advances in catalytic oxidation of volatile organic compounds over Pd-supported catalysts: recent trends and challenges. Front Mater 7:595667

    Article  Google Scholar 

  16. Kim SC, Nahm SW, Shim WG, Lee JW, Moon H (2007) Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs. J Hazard Mater 141:305–314

    Article  CAS  PubMed  Google Scholar 

  17. Tidahy HL, Siffert S, Lamonier J-F, Cousin R, Zhilinskaya EA, Aboukaïs A, Su B-L, Canet X, De Weireld G, Frère M, Giraudon J-M, Leclercq G (2007) Influence of the exchanged cation in Pd/BEA and Pd/FAU zeolites for catalytic oxidation of VOCs. Appl Catal B 70:377–383

    Article  CAS  Google Scholar 

  18. Łojewska J, Kołodziej A, Żak J, Stoch J (2005) Pd/Pt promoted Co3O4 catalysts for VOCs combustion: preparation of active catalyst on metallic carrier. Catal Today 105:655–661

    Article  Google Scholar 

  19. Liotta LF, Ousmane M, Carlo GD, Pantaleo G, Deganello G, Marci G, Retailleau L, Giroir-Fendler A (2008) Total oxidation of propane at low temperature over Co3O4–Ce2O2 mixed oxides: role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl Catal B 347:81–88

    Article  CAS  Google Scholar 

  20. Alifanti M, Florea M, Somacescu S, Parvulescu VI (2005) Supported perovskites for total oxidation of toluene. Appl Catal B 60:33–39

    Article  CAS  Google Scholar 

  21. Yang JS, Jung WY, Lee GD, Park SS, Jeong ED, Kim HG, Hong SS (2008) Catalytic combustion of benzene over metal oxides supported on SBA-15. J Ind Eng Chem 14:779–784

    Article  CAS  Google Scholar 

  22. Li WB, Wang JX, Gong H (2009) Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today 148:81–87

    Article  CAS  Google Scholar 

  23. Jiang SJ, Song SQ (2013) Enhancing the performance of Co3O4/CNTs for the catalytic combustion of toluene by turning the surface structures of CNTs. Appl Catal B 140–141:1–8

    Article  Google Scholar 

  24. Ataloglou T, Vakros J, Bourikas K, Fountzoula C, Kordulis C, Lycourghiotis A (2005) Influence of the preparation method on the structure–activity of cobalt oxide catalysts supported on alumina for complete benzene oxidation. Appl Catal B 57:299–312

    Article  CAS  Google Scholar 

  25. Aligholi N, Dariush S, Ali HS, Azadeh J (2009) Catalytic combustion of ethyl acetate over nanostructure cobalt supported ZSM-5 zeolite catalysts. Chin J Chem 27:483–488

    Article  Google Scholar 

  26. Scire S, Minico S, Crisafulli C (2003) Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Appl Catal B 45:117–125

    Article  CAS  Google Scholar 

  27. Zhu Z, Lu G, Zhang Z, Guo Y, Guo Y, Wang Y (2013) Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method. ACS Catal 3:1154–1164

    Article  CAS  Google Scholar 

  28. Abdullah AZ, Abu Bakar MZ, Bhatia S (2003) A kinetic study of catalytic combustion of ethyl acetate and benzene in air stream over Cr–ZSM-5 catalyst. Ind Eng Chem Res 42:6059–6067

    Article  CAS  Google Scholar 

  29. Zhao W, Ruan S, Qian S, Feng B, Ao C, Wang L, Liu F, Zhang L (2020) Abatement of n-butane by catalytic combustion over Co–ZSM-5 catalysts. Energy Fuels 34:12880–12890

    Article  CAS  Google Scholar 

  30. Hardenberg T, Martens L, Mesman P, Muller H, Nicolaides C (1992) A catalytic method for the quantitative evaluation of crystallinites of ZSM-5 zeolite preparations. Zeolites 12:685–689

    Article  CAS  Google Scholar 

  31. Galarneau A, Villemot F, Rodriguez J, Fajula F, Coasne B (2014) Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir 30:13266–21327

    Article  CAS  PubMed  Google Scholar 

  32. Shirley D (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714

    Article  Google Scholar 

  33. Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  34. Treacy MMJ, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites. Elsevier, Amsterdam

    Google Scholar 

  35. Mhamdi M, Marceau E, Khaddar-Zine S, Ghorbel A, Che M, Ben Taarit YB, Villain F (2004) Formation of cobalt phyllosilicate during solid state preparation of Co2+/ZSM-5 catalysts from cobalt acetate. Catal Lett 98:135–140

    Article  CAS  Google Scholar 

  36. Tsoncheva T, Ivanova L, Rosenholm J, Linden M (2009) Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Appl Catal B 89:365–374

    Article  CAS  Google Scholar 

  37. Todorova S, Naydenov A, Kolev H, Tenchev K, Ivanov G, Kadinov G (2011) Effect of Co and Ce on silica supported manganese catalysts in the reactions of complete oxidation of n-hexane and ethyl acetate. J Mater Sci 46:7152–7159

    Article  CAS  Google Scholar 

  38. Khodakov AY, Bechara R, Griboval-Constant A (2003) Fischer-Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Appl Catal A 254:273–288

    Article  CAS  Google Scholar 

  39. Khodakov AY, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) Reducibility of cobalt species in silica-supported Fischer-Tropsch catalysts. J Catal 168:16–25

    Article  CAS  Google Scholar 

  40. Lónyi F, Solt HE, Pászti Z, Valyon J (2014) Mechanism of NO-SCR by methane over Co, H-ZSM-5 and Co, H-mordenite catalysts. Appl Catal B 150–151:218–229

    Article  Google Scholar 

  41. Gutierrez L, Lombardo EA (2009) Steam resistant CoLa-mordenite catalysts for the SCR of NOx with CH4. Appl Catal A 360:107–119

    Article  CAS  Google Scholar 

  42. Shilina MI, Rostovshchikova TN, Nikolaev SA, Udalova OV (2019) Polynuclear Co-oxo cations in the catalytic oxidation of CO on Co-modified ZSM-5 zeolites. Mater Chem Phys 223:287–298

    Article  CAS  Google Scholar 

  43. Wang X, Chen H, Sachtler WMH (2000) Catalytic reduction of NOx by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods. Appl Catal B 26:L227–L239

    Article  CAS  Google Scholar 

  44. Wang X, Chen H, Sachtler WMH (2001) Selective reduction of NOx with hydrocarbons over Co/MFI prepared by sublimation of CoBr2 and other methods. Appl Catal B 29:47–60

    Article  Google Scholar 

  45. Mhamdi M, Khaddar-Zine S, Ghorbel A (2006) Influence of the method of ion exchange and cobalt loading on the physico-chemical and catalytic properties of Co–ZSM-5 catalysts. React Kinet Catal Lett 88:149–156

    Article  CAS  Google Scholar 

  46. Stefanov P, Todorova S, Naydenov A, Tzaneva B, Kolev Atanasova G, Stoyanova D, Karakirova Y, Alexieva K (2015) On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane. Chem Eng 266:329–338

    Article  CAS  Google Scholar 

  47. Fierro G, Eberhardt MA, Houalla M, Hercules DM, Keith Hall W (1996) Redox chemistry of CoZSM-5 zeolite. J Phys Chem 100:8468–8477

    Article  CAS  Google Scholar 

  48. Dedecek J, Kaucky D, Wichterlova B (2000) Co2+ ion siting in pentasil-containing zeolites, Part 3: Co2+ ion sites and their occupation in ZSM-5: a Vis diffuse reflectance spectroscopy study. Microporous Mesoporous Mater 35–36:483–494

    Article  Google Scholar 

  49. Chupin C, van Veen AC, Konduru M, Després J, Mirodatos C (2006) Identity and location of active species for NO reduction by CH4 over Co–ZSM-5. J Catal 241:103–114

    Article  CAS  Google Scholar 

  50. Szegedi Á, Popova M (2010) Toluene hydrogenation over nickel-containing MCM-41 and Ti-MCM-41 materials. J Porous Mater 17:663–668

    Article  CAS  Google Scholar 

  51. Duprat F (2002) Light-off curve of catalytic reaction and kinetics. Chem Eng Sci 57:901–911

    Article  CAS  Google Scholar 

  52. Velinova R, Todorova S, Drenchev B, Ivanov G, Shipochka M, Markov P, Nihtianova D, Kovacheva D, Larin AV, Naydenov A (2019) Complex study of the activity, stability and sulfur resistance of Pd/La2O3–CeO2–Al2O3 system as monolithic catalyst for abatement of methane. Chem Eng J 368:865–876

    Article  CAS  Google Scholar 

  53. Vannice MA (2005) Kinetics of catalytic reactions. Springer, New York

    Book  Google Scholar 

  54. Vannice MA (2007) An analysis of the Mars–van Krevelen rate expression. Catal Today 123:18–22

    Article  CAS  Google Scholar 

  55. Doornkamp C, Ponec V (2000) The universal character of the Mars and Van Krevelen mechanism. J Mol Catal A 162:19–32

    Article  CAS  Google Scholar 

  56. Mars P, Van Krevelen DW (1954) Oxidations carried out by means of vanadium oxide catalysts. Spec Suppl Chem Eng Sci 3:41–59

    Article  CAS  Google Scholar 

  57. Hurtado P, Ordóñez S, Sastre H, Dıez FV (2004) Development of a kinetic model for the oxidation of methane over Pd/Al2O3 at dry and wet conditions. Appl Catal B 51:229–238

    Article  CAS  Google Scholar 

  58. Boudart M (1972) Two-step catalytic reactions. AIChE J 18:465–478

    Article  CAS  Google Scholar 

  59. Vannice MA, Hyun SH, Kalpakci SH, Liauh WC (1979) Entropies of adsorption in heterogeneous catalytic reactions. J Catal 56:358–362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged to the Bulgarian National Science Fund (Grant Number КП-06-H49/4).

Funding

This study was funded by Grant Number КП-06-H49/4. Research equipment of distributed research infrastructure INFRAMAT ДO1-382/18.12.2020 (part of Bulgarian National Roadmap for Research Infrastructures) supported by Bulgarian Ministry of Education and Science was used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralitsa Velinova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velinova, R., Grahovski, B., Kolev, H. et al. Reaction kinetics and mechanism of the catalytic oxidation of propane over Co–ZSM-5 zeolites. Reac Kinet Mech Cat 135, 83–103 (2022). https://doi.org/10.1007/s11144-021-02136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02136-z

Keywords

Navigation