Skip to main content
Log in

Design of a new photochromic oscillator: towards dynamical models of pacemaker neurons

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A brand-new photochemical oscillator is designed in this work. It consists of two thermally reversible photochromic compounds. One photochrome is inverse and autocatalytic because the photoproduct emits a fluorescence that enhances its own production. The other photochrome is direct and not fluorescent. The two photochromes have specific spectral features that generate mutual filter effects when dissolved in the same solution and under uniform irradiation. The double photochromic system can originate photochemical oscillations if an essential condition is fulfilled. The autocatalytic photochromic compound must have its photochemical quantum yield and thermal recovery kinetic constant appreciably larger than the other photochrome. The conditions favorable for having photochemical oscillations are quantitatively described. This new photochromic oscillator, working in isothermal conditions, is an alluring model of pacemaker neurons, which can communicate with other artificial neuron models through optical signals. It constitutes a valuable contribution to the development of neuromorphic engineering in wetware. Its characteristics and performances are compared with those of the other photochromic oscillator that has been proposed so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Albus JS, Bekey GA, Holland JH, Kanwisher NG, Krichmar JL, Mishkin M, Modha DS, Raichle ME, Shepherd GM, Tononi G (2007) A proposal for a decade of the mind initiative. Science 317:1321

    Article  CAS  Google Scholar 

  2. Jeon J, Suh Y (2017) Analyzing the major issues of the 4th industrial revolution. Asian J Innov Policy 6:262–273

    Google Scholar 

  3. Gentili PL (2018) Untangling Complex Systems: A Grand Challenge for Science. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Gentili PL (2021) Why is complexity science valuable for reaching the goals of the UN 2030 agenda? Rend Fis Acc Lincei 32:117–134. https://doi.org/10.1007/s12210-020-00972-0

    Article  PubMed  Google Scholar 

  5. Russell SJ, Norvig P (2009) Artificial Intelligence. A Modern Approach. Prentice-Hall NJ, USA

    Google Scholar 

  6. Mead C (1989) Analog VLSI and Neural Systems. Addison-Wesley, MA, USA

    Google Scholar 

  7. Donoghue JP (2008) Bridging the brain to the world: a perspective on neural interface systems. Neuron 60:511–521. https://doi.org/10.1016/j.neuron.2008.10.037

    Article  CAS  PubMed  Google Scholar 

  8. Indiveri G (2021) Introducing “Neuromorphic Computing and Engineering.” Neuromorph Comput Eng 1:010401. https://doi.org/10.1088/2634-4386/ac0a5b

    Article  Google Scholar 

  9. Zhu Y, Zhu Y, Mao H, He Y, Jiang S, Zhu L, Chen C, Wan C, Wan Q (2022) Recent advances in emerging neuromorphic computing and perception devices. J Phys D: Appl Phys 55:053002. https://doi.org/10.1088/1361-6463/ac2868

    Article  CAS  Google Scholar 

  10. Izhikevich M (2007) Dynamical systems in neuroscience. MIT Press, Cambridge, MA

    Google Scholar 

  11. Rabinovich MI, Varona P, Selverston AI (2006) Dynamical principles in neuroscience. Rev Mod Phys 78:1213–1265

    Article  Google Scholar 

  12. Service RF (2014) The brain chip. Science 345:614–616

    Article  CAS  Google Scholar 

  13. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD, Risk WP, Manohar R, Modha DS (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345:668–673

    Article  CAS  Google Scholar 

  14. Ha SD, Ramanathan S (2011) Adaptive oxide electronics: a review. J Appl Phys 110:071101

    Article  Google Scholar 

  15. Di Ventra M, Pershin YV (2013) The parallel approach. Nat Phys 9:200–202

    Article  Google Scholar 

  16. Pilarczyk K, Podborska A, Lis M, Kawa M, Migdal D, Szacilowski K (2016) Synaptic behavior in an optoelectronic device based on semiconductor-nanotube hybrid. Adv Electron Mater 2:1500471. https://doi.org/10.1002/aelm.201500471

    Article  CAS  Google Scholar 

  17. Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E (2016) Stochastic phase-change neurons. Nat Nanotechnol 11:693–699

    Article  CAS  Google Scholar 

  18. Lee Y, Lee T-W (2019) Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics. Acc Chem Res 52:964–974. https://doi.org/10.1021/acs.accounts.8b00553

    Article  CAS  PubMed  Google Scholar 

  19. Adamatzky A, De Lacy CB, Asai T (2005) Reaction–diffusion computers. Elsevier, New York, NY, USA

    Google Scholar 

  20. Gentili PL (2013) Small steps towards the development of chemical artificial intelligent systems. RSC Adv 3:25523–25549. https://doi.org/10.1039/C3RA44657C

    Article  CAS  Google Scholar 

  21. Gentili PL, Giubila MS, Germani R, Romani A, Nicoziani A, Spalletti A, Heron BM (2017) Optical communication among oscillatory reactions and photo-excitable systems: UV and visible radiation can synchronize artificial neuron models. Angew Chem Int Ed 56:7535–7540. https://doi.org/10.1002/anie.201702289

    Article  CAS  Google Scholar 

  22. Gentili PL, Giubila MS, Germani R, Heron BM (2018) Photochromic and luminescent compounds as artificial neuron models. Dyes Pigm 156:149–159. https://doi.org/10.1016/j.dyepig.2018.04.006

    Article  CAS  Google Scholar 

  23. Vanag V (2019) Hierarchical network of pulse coupled chemical oscillators with adaptive behavior: chemical neurocomputer. Chaos 29:083104. https://doi.org/10.1063/1.5099979

    Article  CAS  PubMed  Google Scholar 

  24. Litschel T, Norton MM, Tserunyan V, Fraden S (2018) Engineering reaction–diffusion networks with properties of neural tissue. Lab Chip 18:714–722. https://doi.org/10.1039/C7LC01187C

    Article  CAS  PubMed  Google Scholar 

  25. Bartolomei B, Heron BM, Gentili PL (2020) A contribution to neuromorphic engineering: neuromodulation implemented through photochromic compounds maintained out of equilibrium by UV–visible radiation. Rend Fis Acc Lincei 31:39–52. https://doi.org/10.1007/s12210-020-00869-y

    Article  Google Scholar 

  26. Okamoto H, Tanaka N, Naito M (1995) Analogy between the stimulus-response characteristics of neuronal and electrochemical cells. Chem Phys Lett 237:432–436. https://doi.org/10.1016/0009-2614(95)00336-3

    Article  CAS  Google Scholar 

  27. Liu Y, Sebek M, Mori F, Kiss IZ (2018) Synchronization of three electrochemical oscillators: from local to global coupling. Chaos 28:045104. https://doi.org/10.1063/1.5012520

    Article  CAS  PubMed  Google Scholar 

  28. Gentili PL, Micheau J-C (2020) Light and chemical oscillations: Review and perspectives. J Photochem Photobiol C 43:100321. https://doi.org/10.1016/j.jphotochemrev.2019.100321

    Article  CAS  Google Scholar 

  29. Gentili PL, Horvath V, Vanag VK, Epstein IR (2012) Belousov-Zhabotinsky “chemical neuron” as a binary and fuzzy logic processor. Int J Unconv Comput 8:177–192

    Google Scholar 

  30. Horvath V, Gentili PL, Vanag VK, Epstein IR (2012) Pulse-coupled chemical oscillators with time delay. Angew Chem Int Ed 51:6878–6881. https://doi.org/10.1002/anie.201201962

    Article  CAS  Google Scholar 

  31. Gentili PL, Bartolomei B, Micheau J-C (2021) Light-driven artificial neuron models based on photoswitchable systems. Dyes Pigm 187:109086. https://doi.org/10.1016/j.dyepig.2020.109086

    Article  CAS  Google Scholar 

  32. Gentili PL, Dolnik M, Epstein IR (2014) “Photochemical oscillator”: Colored hydrodynamic oscillations and waves in a photochromic system. J Phys Chem C 118:598–608. https://doi.org/10.1021/jp407393h

    Article  CAS  Google Scholar 

  33. Gentili PL, Gotoda H, Dolnik M, Epstein IR (2015) Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor. Chaos 25:013104. https://doi.org/10.1063/1.4905458

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi K, Gotoda H, Gentili PL (2016) Probing and exploiting the chaotic dynamics of a hydrodynamic photochemical oscillator to implement all the basic binary logic functions. Chaos 26:053102. https://doi.org/10.1063/1.4948590

    Article  CAS  PubMed  Google Scholar 

  35. Boissonade J, De Kepper P (1980) Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system. J Phys Chem A 84:501–506. https://doi.org/10.1021/j100442a009

    Article  CAS  Google Scholar 

  36. Borderie B, Lavabre D, Micheau JC, Laplante JP (1992) Nonlinear dynamics, multiple steady states, and oscillations in photochemistry. J Phys Chem 96:2953–2961. https://doi.org/10.1021/j100186a035

    Article  CAS  Google Scholar 

  37. Gentili PL, Rightler AL, Heron BM, Gabbutt CD (2016) Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems. Chem Commun 52:1474–1477. https://doi.org/10.1039/C5CC09290F

    Article  CAS  Google Scholar 

  38. Gentili PL, Rightler AL, Heron BM, Gabbutt CD (2016) Discriminating between the UV-A, UV-B and UV-C regions by novel Biologically Inspired Photochromic Fuzzy Logic (BIPFUL) systems: A detailed comparative study. Dyes Pigm 135:169–176. https://doi.org/10.1016/j.dyepig.2016.02.034

    Article  CAS  Google Scholar 

  39. Cervellati R (2021) William Crowell Bray and the discovery of the first periodic homogeneous reaction in 1921. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-021-02019-3

    Article  Google Scholar 

Download references

Funding

This research was not supported by any external grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Luigi Gentili.

Ethics declarations

Conflict of interest

The authors have no competing interests and conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 145 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentili, P.L., Baldinelli, L. & Bartolomei, B. Design of a new photochromic oscillator: towards dynamical models of pacemaker neurons. Reac Kinet Mech Cat 135, 1281–1297 (2022). https://doi.org/10.1007/s11144-021-02122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02122-5

Keywords

Navigation