Skip to main content
Log in

Kinetic and mechanism studies of tetracycline photodegradation using synthesized ZnAl2O4

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, we report the photodegradation of a pharmaceutical pollutant namely the tetracycline (TC) onto the spinel ZnAl2O4. The semiconductor ZnAl2O4 was synthesized by chemical route and characterized by X-ray diffraction, scanning electron microscopy and optical analysis. The capacitance potential (C−2–E) measurements showed that the oxide exhibit n-type conduction, supported by a negative thermo-power. The degradation of TC was performed by combined adsorption/photocatalysis processes. The result showed that 30 min of contact time was sufficient to reach 42% of the adsorption capacity; the photodegradation rate of TC was evaluated on ZnAl2O4 under optimal operating parameters pH ~ 4.4, catalyst dose (1 g/L), and initial TC concentration (20 mg/L). The kinetic shows that the TC disappears almost completely (92%) and follows a second order model with a half photocatalytic lifetime of 21 min for a TC concentration of 20 mg/L. The mechanism of the antibiotic tetracycline photodegradation on ZnAl2O4 indicated that the \({\text{O}}_{2}^{ \cdot - }\) radicals and the holes are mainly responsible for the oxidation of TC. The process can be qualified as clean remediation and is a part of a sustainable development perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gu C, Karthikeyan KG (2005) Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol 39:2660–2667. https://doi.org/10.1021/es048603o

    Article  CAS  PubMed  Google Scholar 

  2. Saremi F, Miroliaei MR, Shahabi Nejad M, Sheibani H (2020) Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves. J Mol Liq 318:114126. https://doi.org/10.1016/j.molliq.2020.114126

    Article  CAS  Google Scholar 

  3. Hou X, Shi J, Wang N et al (2020) Removal of antibiotic tetracycline by metal-organic framework MIL-101(Cr) loaded nano zero-valent iron. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.113512

    Article  Google Scholar 

  4. Safari GH, Hoseini M, Seyedsalehi M et al (2015) Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Sci Technol 12:603–616. https://doi.org/10.1007/s13762-014-0706-9

    Article  CAS  Google Scholar 

  5. Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739. https://doi.org/10.1016/S0045-6535(99)00445-2

    Article  PubMed  Google Scholar 

  6. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364. https://doi.org/10.1021/cr020441w

    Article  CAS  PubMed  Google Scholar 

  7. Wang D, Li S, Feng Q (2018) Supramolecular self-assembled carbon nitride for the degradation of tetracycline hydrochloride. J Mater Sci Mater Electron 29:9380–9386. https://doi.org/10.1007/s10854-018-8970-y

    Article  CAS  Google Scholar 

  8. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x

    Article  CAS  PubMed  Google Scholar 

  9. Jodeyri M, Haghighi M, Shabani M (2019) Enhanced-photoreduction deposition of Ag over sono-dispersed C3N4-Clinoptilolite used as nanophotocatalyst for efficient photocatalytic degradation of tetracycline antibiotic under simulated solar-light. J Mater Sci Mater Electron 30:13877–13894. https://doi.org/10.1007/s10854-019-01584-7

    Article  CAS  Google Scholar 

  10. Bautitz IR, Nogueira RFP (2007) Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effects. J Photochem Photobiol A 187:33–39. https://doi.org/10.1016/j.jphotochem.2006.09.009

    Article  CAS  Google Scholar 

  11. Addamo M, Augugliaro V, Di Paola A et al (2005) Removal of drugs in aqueous systems by photoassisted degradation. J Appl Electrochem 35:765–774. https://doi.org/10.1007/s10800-005-1630-y

    Article  CAS  Google Scholar 

  12. Reyes C, Fernández J, Freer J et al (2006) Degradation and inactivation of tetracycline by TiO2 photocatalysis. J Photochem Photobiol A Chem 184:141–146. https://doi.org/10.1016/j.jphotochem.2006.04.007

    Article  CAS  Google Scholar 

  13. Niu J, Ding S, Zhang L et al (2013) Chemosphere visible-light-mediated Sr-Bi 2 O 3 photocatalysis of tetracycline: kinetics, mechanisms and toxicity assessment. Chemosphere 93:1–8. https://doi.org/10.1016/j.chemosphere.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  14. Zawadzki M (2007) Pd and ZnAl2O4 nanoparticles prepared by microwave-solvothermal method as catalyst precursors. J Alloys Compd 439:312–320. https://doi.org/10.1016/j.jallcom.2006.08.077

    Article  CAS  Google Scholar 

  15. Ghribi F, Sehailia M, Aoudjit L et al (2020) Solar-light promoted photodegradation of metronidazole over ZnO-ZnAl2O4 heterojunction derived from 2D-layered double hydroxide structure. J Photochem Photobiol A Chem 397:112510. https://doi.org/10.1016/j.jphotochem.2020.112510

    Article  CAS  Google Scholar 

  16. Chaudhary A, Mohammad A, Mobin SM (2018) Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater Sci Eng B Solid-State Mater Adv Technol 227:136–144. https://doi.org/10.1016/j.mseb.2017.10.009

    Article  CAS  Google Scholar 

  17. Shilpa G, Yogendra K, Mahadevan KM, Madhusudhana N (2017) Synthesis of Znal 2 o 4 nano-particles and its application for photo- catalytic decolourization of model azo dye acid red 88 in presence of natural sunlight. J Appl Chem 10:35–41. https://doi.org/10.9790/5736-1007023541

    Article  CAS  Google Scholar 

  18. Ould Brahim I, Belmedani M, Belgacem A, Hadoun H, Sadaoui Z (2014) Discoloration of azo dye solutions by adsorption on activated carbon prepared from the cryogenic grinding of used tires. Chem Eng Trans 38:121

    Google Scholar 

  19. Ould Brahim I, Belmedani M, Haddad A, Hadoun H, Belgacem A (2018) Degradation of C.I. Acid Red 51 and C.I. Acid Blue 74 in aqueous solution by combination of hydrogen peroxide, nanocrystallite zinc oxide and ultrasound irradiation. J Adv Oxid Technol 21:26–43

    Article  Google Scholar 

  20. Tangcharoen T, Thienprasert J, Kongmark C (2019) Effect of calcination temperature on structural and optical properties of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. J Adv Ceram 8:352–366. https://doi.org/10.1007/s40145-019-0317-5

    Article  CAS  Google Scholar 

  21. Farhadi S, Panahandehjoo S (2010) Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: a novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions. Appl Catal A Gen 382:293–302. https://doi.org/10.1016/j.apcata.2010.05.005

    Article  CAS  Google Scholar 

  22. Du X, Li L, Zhang W et al (2015) Morphology and structure features of ZnAl2O4 spinel nanoparticles prepared by matrix-isolation-assisted calcination. Mater Res Bull 61:64–69. https://doi.org/10.1016/j.materresbull.2014.10.009

    Article  CAS  Google Scholar 

  23. Phani AR, Passacantando M, Santucci S (2001) Synthesis and characterization of zinc aluminum oxide thin films by sol-gel technique. Mater Chem Phys 68:66–71. https://doi.org/10.1016/S0254-0584(00)00270-4

    Article  CAS  Google Scholar 

  24. Tian Q, Fang G, Ding L et al (2020) ZnAl2O4/Bi2MoO6 heterostructures with enhanced photocatalytic activity for the treatment of organic pollutants and eucalyptus chemimechanical pulp wastewater. Mater Chem Phys 241:122299. https://doi.org/10.1016/j.matchemphys.2019.122299

    Article  CAS  Google Scholar 

  25. Chaudhary A, Mohammad A, Mobin SM (2018) Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater Sci Eng B 227:136–144. https://doi.org/10.1016/j.mseb.2017.10.009

    Article  CAS  Google Scholar 

  26. Boutra B, Güy N, Özacar M, Trari M (2020) Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light. J Magn Magn Mater 497:165994. https://doi.org/10.1016/j.jmmm.2019.165994

    Article  CAS  Google Scholar 

  27. Haddad M, Belhadi A, Boudjellal L, Trari M (2020) Photocatalytic hydrogen production on the hetero-junction CuO/ZnO. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.11.053

    Article  Google Scholar 

  28. Zhu X, Wang Y, Sun R, Zhou D (2013) Chemosphere photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 92:925–932. https://doi.org/10.1016/j.chemosphere.2013.02.066

    Article  CAS  PubMed  Google Scholar 

  29. Liu S, Zhao X, Sun H et al (2013) The degradation of tetracycline in a photo-electro-Fenton system. Chem Eng J 231:441–448. https://doi.org/10.1016/j.cej.2013.07.057

    Article  CAS  Google Scholar 

  30. Chen Y, Hu C, Qu J, Yang M (2008) Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. J Photochem Photobiol A 197:81–87. https://doi.org/10.1016/j.jphotochem.2007.12.007

    Article  CAS  Google Scholar 

  31. Sharma SK, Kumar A, Sharma G et al (2020) LaTiO2N/Bi2S3 Z-scheme nano heterostructures modified by rGO with high interfacial contact for rapid photocatalytic degradation of tetracycline. J Mol Liq 311:113300. https://doi.org/10.1016/j.molliq.2020.113300

    Article  CAS  Google Scholar 

  32. Nasseri S, Mahvi AH, Seyedsalehi M et al (2017) Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix. J Mol Liq 241:704–714. https://doi.org/10.1016/j.molliq.2017.05.137

    Article  CAS  Google Scholar 

  33. Merabet S, Bouzaza A, Wolbert D (2009) Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process-Influence of some operating parameters. J Hazard Mater 166:1244–1249. https://doi.org/10.1016/j.jhazmat.2008.12.047

    Article  CAS  PubMed  Google Scholar 

  34. Elhadj M, Samira A, Mohamed T et al (2019) Removal of basic red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies. Sep Sci Technol. https://doi.org/10.1080/01496395.2019.1577896

    Article  Google Scholar 

  35. Nezamzadeh-Ejhieh A, Khorsandi S (2014) Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. J Ind Eng Chem 20:937–946. https://doi.org/10.1016/j.jiec.2013.06.026

    Article  CAS  Google Scholar 

  36. Omrani N, Nezamzadeh-Ejhieh A (2020) Photodegradation of sulfasalazine over Cu2O-BiVO4-WO3 nano-composite: characterization and experimental design. Int J Hydrog Energy 45:19144–19162. https://doi.org/10.1016/j.ijhydene.2020.05.019

    Article  CAS  Google Scholar 

  37. Safari GH, Hoseini M, Seyedsalehi M et al (2014) Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. J Environ Sci Technol. https://doi.org/10.1007/s13762-014-0706-9

    Article  Google Scholar 

  38. Lou W, Kane A, Wolbert D et al (2017) Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: scavenger study and process intensification feasibility. Chem Eng Process Process Intensif 122:213–221. https://doi.org/10.1016/j.cep.2017.10.010

    Article  CAS  Google Scholar 

  39. Yeşilova E, Osman B, Kara A, Tümay Özer E (2018) Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption. Sep Purif Technol 200:155–163. https://doi.org/10.1016/j.seppur.2018.02.002

    Article  CAS  Google Scholar 

  40. Ai C, Zhou D, Wang Q et al (2015) Optimization of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation. Sol Energy 113:34–42. https://doi.org/10.1016/j.solener.2014.12.022

    Article  CAS  Google Scholar 

  41. Jingyu H, Ran Y, Zhaohui L et al (2019) In-situ growth of ZnO globular on g-C3N4 to fabrication binary heterojunctions and their photocatalytic degradation activity on tetracyclines. Solid State Sci 92:60–67. https://doi.org/10.1016/j.solidstatesciences.2019.02.009

    Article  CAS  Google Scholar 

  42. Hariganesh S, Vadivel S, Maruthamani D et al (2020) Facile large scale synthesis of CuCr2O4/CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light. Appl Organomet Chem 34:1–10. https://doi.org/10.1002/aoc.5365

    Article  CAS  Google Scholar 

  43. Zhao X, Li J, Cui X et al (2020) Construction of novel 3D ZnO hierarchical structure with Fe3O4 assist and its enhanced visible light photocatalytic performance. J Environ Chem Eng 8:103548. https://doi.org/10.1016/j.jece.2019.103548

    Article  CAS  Google Scholar 

  44. Hong Y, Li C, Yin B et al (2018) Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite. Chem Eng J 338:137–146. https://doi.org/10.1016/j.cej.2017.12.108

    Article  CAS  Google Scholar 

  45. Ollis DF (2018) Kinetics of photocatalyzed reactions: five lessons learned. Front Chem 6:1–7. https://doi.org/10.3389/fchem.2018.00378

    Article  CAS  Google Scholar 

  46. Mekatel H, Amokrane S, Benturki A, Nibou D (2012) Treatment of polluted aqueous solutions by Ni 2+, Pb 2+, Zn 2+, Cr +6, Cd +2 and Co +2 ions by ion exchange process using faujasite zeolite. Procedia Eng 33:52–57. https://doi.org/10.1016/j.proeng.2012.01.1176

    Article  CAS  Google Scholar 

  47. Simonin J (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

  48. Mukhlish MZB, Najnin F, Rahman MM, Uddin MJ (2013) Photocatalytic degradation of different dyes using TiO2 with high surface area: a kinetic study. J Sci Res 5:301

    Article  CAS  Google Scholar 

  49. Ould Brahim I, Belmedani M, Hadoun H, Belgacem A (2021) The photocatalytic degradation kinetics of food dye in aqueous solution under UV/ZnO system. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-021-02006-8

    Article  Google Scholar 

  50. Djebri A, Belmedani M, Belhamdi B et al (2021) The combined effectiveness of activated carbon (AC)/ZnO for the adsorption of mebeverine hydrochloride/photocatalytic degradation under sunlight. Reac Kinet Mech Cat 132:529–546. https://doi.org/10.1007/s11144-021-01932-x

    Article  CAS  Google Scholar 

  51. Liu Y (2008) New insights into pseudo-second-order kinetic equation for adsorption. Colloids Surf A 320:275–278. https://doi.org/10.1016/j.colsurfa.2008.01.032

    Article  CAS  Google Scholar 

  52. Taylor P, Journal B (2010) Pseudo-second-order kinetic model for biosorption of methylene blue onto tamarind fruit shell: comparison of linear and nonlinear methods. Bioremediat J. https://doi.org/10.1080/10889868.2010.514966

    Article  Google Scholar 

  53. Shen CH, Chen Y, Xu XJ et al (2021) Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts. J Hazard Mater 416:126217. https://doi.org/10.1016/j.jhazmat.2021.126217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Mechanic and Engineering Process Faculty and the Chemistry Faculty (USTHB, Algiers). The authors are thankful to Amar MANSERI for SEM images (CRTSE, Algiers, Algeria) and to Leith ELMOUSSAOUI for the TOC analysis (CRD, Boumerdes, Algeria)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Hemmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2891 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmi, A., Belmedani, M., Mekatel, E. et al. Kinetic and mechanism studies of tetracycline photodegradation using synthesized ZnAl2O4. Reac Kinet Mech Cat 134, 1039–1054 (2021). https://doi.org/10.1007/s11144-021-02114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02114-5

Keywords

Navigation