Skip to main content
Log in

Synthesis of CuO-modified silicon nanowires as a photocatalyst for the degradation of malachite green

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work aims to investigate the malachite green photodegradation by CuO-modified and unmodified silicon nanowires (SiNWs) as photocatalysts in the presence of peroxymonosulfate (PMS) under UV or Visible light irradiations. SiNWs were synthesized by one-step metal assisted-chemical etching of silicon substrate in aqueous (HF/AgNO3) solution and modified with CuO nanoparticles using an electroless deposition technique. The as-prepared samples were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. Obtained results revealed that the Cu-modified SiNWs exhibit higher photocatalytic activity under both UV and visible irradiations compared to unmodified ones. The addition of PMS to the mixture (photocatalyst/MG) leads to an increase in this activity resulting in almost total discoloration of the order of 98% for an irradiation period of 100 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amdouni S, Cherifi Y, Coffinier Y, Addad A, Zaïbi MA, Oueslati M, Boukherroub R (2018) Gold nanoparticles coated silicon nanowires for efficient catalytic and photocatalytic applications. Mater Sci Semicond Process 75:206–213

    Article  CAS  Google Scholar 

  2. Yang C, Wang J, Mei L, Wang X (2014) Enhanced photocatalytic degradation of rhodamine B by Cu2O coated silicon nanowire arrays in presence of H2O2. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2014.03.023

    Article  Google Scholar 

  3. Brahiti N, Hadjersi T, Menari H, Amirouche S, El Kechai O (2015) Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires. Mater Res Bull 62:30–36

    Article  CAS  Google Scholar 

  4. Gonchar KA, Agafilushkina SN, Moiseev DV, Bozhev IV, Manykin AA, Kropotkina EA, Gambaryan AS, Osminkina LA (2020) H1N1 influenza virus interaction with a porous layer of silicon nanowires. Mater Res Express. https://doi.org/10.1088/2053-1591/ab7719

    Article  Google Scholar 

  5. Hamdi A, Boussekey L, Roussel P, Addad A, Ezzaouia H, Boukherroub R, Coffinier Y (2016) Hydrothermal preparation of MoS2/TiO2/Si nanowires composite with enhanced photocatalytic performance under visible light. Mater Des. https://doi.org/10.1016/j.matdes.2016.07.098

    Article  Google Scholar 

  6. Lian S, Tsang CHA, Kang Z, Wong N, Lee ST (2011) Hydrogen-terminated silicon nanowire photocatalysis: benzene oxidation and methyl red decomposition. Mater Res Bull 46:2441–2444

    Article  CAS  Google Scholar 

  7. Megouda N, Hadjersi T, Coffinier Y, Szunerits S, Boukherroub R (2016) Investigation of morphology, reflectance and photocatalytic activity of nanostructured silicon surfaces. Microelectron Eng 159:94–101

    Article  CAS  Google Scholar 

  8. Casiello M, Picca RA, Fusco C, D’Accolti L, Leonardi AA, Lo Faro MJ, Irrera A, Trusso S, Cotugno P, Sportelli MC, Cioffi N (2018) Catalytic activity of silicon nanowires decorated with gold and copper nanoparticles deposited by pulsed laser ablation. Nanomaterials 8:78

    Article  Google Scholar 

  9. Karthikeyan C, Arunachalam P, Ramachandran K, Al-Mayouf AM, Karuppuchamy S (2020) Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.154281

    Article  Google Scholar 

  10. Kolay A, Maity D, Ghosal P, Deepa M (2019) Selenium nanoparticles decorated silicon nanowires with enhanced liquid junction photoelectrochemical solar cell performance. J Phys Chem light. https://doi.org/10.1021/acs.jpcc.9b00062

    Article  Google Scholar 

  11. Mokshin PV, Juneja S, Pavelyev VS (2019) Synthesis of silicon nanowires using plasma chemical etching process for solar cell applications. J Phys Conf Ser 1368:022060

    Article  CAS  Google Scholar 

  12. Abdulkadir A, Abdul Aziz A, Zamir Pakhurudin M (2020) Effects of silver nanoparticles layer thickness towards properties of black silicon fabricated by metal assisted chemical etching for photovoltaics. SN Appl Sci 2:1–8

    Article  Google Scholar 

  13. Markose KK, Shaji M, Bhatia S, Nair P, Saji KJ, Antony A, Jayara MK (2020) Novel boron doped p-type Cu2O thin film as hole selective contact in c-Si solar cell. Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b22581

    Article  Google Scholar 

  14. Su DS, Chen PY, Chiu HC, Han CC, Yen TJ, Chen HM (2019) Disease antigens detection by silicon nanowires with the efficiency optimization of their antibodies on a chip. Biosens Bioelectron 141:111209

    Article  CAS  Google Scholar 

  15. Ghosh R, Ghosh J, Das R, Mawlong LPL, Paul K, Gir PK (2018) Multifunctional Ag nanoparticle decorated Si nanowires for sensing photocatalysis and light emission applications. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2018.07.123

    Article  PubMed  Google Scholar 

  16. Huang Z, Chen S, Wang Y, Li T (2020) Gold nanoparticle modified silicon nanowire array based sensor for lowcost, high sensitivity and selectivity detection of mercury ions. Mater Res Express 7:035017

    Article  CAS  Google Scholar 

  17. Wang F, Deng Y, Yuan C (2019) Comparative life cycle assessment of silicon nanowire and silicon nanotube based lithium ion batteries for electric vehicles. Procedia CIRP 80:310–315

    Article  Google Scholar 

  18. Gao A, Chen S, Wang Y, Lie T (2018) Silicon nanowire field-effect-transistor-based biosensor for biomedical applications. Sens Mater 30:1619–1628

    CAS  Google Scholar 

  19. Naama S, Hadjersi T, Menari H, Nezzal G, Baba Ahmed L, Lamrani S (2016) Enhancement of the tartrazine photodegradation by modification of silicon nanowires with metal nanoparticles. Mater Res Bull 76:317–326

    Article  CAS  Google Scholar 

  20. Yu Y, Zhao Y, Sun H, Ahmad M (2013) Au nanoparticles decorated CuO nanowire arrays with enhanced photocatalytic properties. Mater Lett 108:41–45

    Article  CAS  Google Scholar 

  21. Pan K, Ming H, Yu H, Huang H, Liu Y, Kang Z (2012) Copper nanoparticles modified silicon nanowires with enhanced cross-coupling catalytic ability. Dalton Trans 41:2564–2566

    Article  CAS  Google Scholar 

  22. Xiong Z, Zheng M, Li H, Ma L, Shen W (2013) Fabrication and optical properties of silicon nanowire /Cu2O nano heterojunctions by electroless deposition technique. Mater Lett 112:211–214

    Article  CAS  Google Scholar 

  23. Kangralkar MV, Kangralkar VA, Momin N, Manjanna J (2019) Cu2O nanoparticles for adsorption and photocatalytic degradation of methylene blue dye from aqueous medium. Environ Nanotechnol Monit Manag 12:100265

    Google Scholar 

  24. Hu Y, Luo Y, Liu S, Zhang RS, Wang F, Li Y, Li S, Zhong W (2020) Fabrication of Cu2O/Si nanowires photocathode and its photoelectrochemical properties. Semicond Sci Technol. https://doi.org/10.1088/1361-6641/ab73e8

    Article  Google Scholar 

  25. Moulai F, Hadjersi T, Ifires M, Khen A, Rachedi N (2019) Enhancement of electrochemical capacitance of silicon nanowires arrays (SiNWs) by modification with manganese dioxide MnO2. SILICON. https://doi.org/10.1007/s12633-019-0066-7

    Article  Google Scholar 

  26. Tao B, Miao F, Chu PK (2015) Fabrication and photoelectrochemical study of vertically oriented TiO2/Ag/SiNWs arrays. J Alloys Compd 635:112–117

    Article  CAS  Google Scholar 

  27. Kakutaa S, Abe T (2009) Photocatalytic activity of Cu2O nanoparticles prepared through novel synthesis method of precursor reduction in the presence of thiosulfate. Solid State Sci 11:1465–1469

    Article  Google Scholar 

  28. He Q, Liu J, Tian Y, Wu Y, Magesa F, Deng P, Li G (2019) Facile preparation of Cu2O nanoparticles and reduced graphene oxide nanocomposite for electrochemical sensing of rhodamine B. Nanomaterials 9:958

    Article  CAS  Google Scholar 

  29. Zhang Y, Zeng W, Li Y (2019) Porous MoS2 microspheres decorated with Cu2O nanoparticles for ammonia sensing property. Mater Lett 241:223–226

    Article  CAS  Google Scholar 

  30. Cong DS, Hai PN, Bang N (2017) Synthesis and optical properties of Cu2O and Au-Cu2O core-shell particles. J Sci Math Phys 33:73–79

    Google Scholar 

  31. Sathiya SM, Okram GS, Jothi M (2017) Structural, optical and electrical properties of copper oxide nanoparticles prepared through microwave assistance. Adv Mater Proc 2:371–377

    Article  Google Scholar 

  32. Chatterjee S, Saha SK, Pal AJ (2016) Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through SILAR technique. Sol Energy Mater Sol Cells 147:17–26

    Article  CAS  Google Scholar 

  33. Bhavyasree PG, Xavier TS (2020) Green synthesis of Copper Oxide/Carbon nanocomposites using the leaf extract of AdhatodavasicaNees, their characterization and antimicrobial activity. Heliyon 6:e03323

    Article  CAS  Google Scholar 

  34. Khalaji AD, Jarosova M, Machek P (2020) The Preparation, structural characterization, optical properties, and antibacterial activity of the CuO/Cu2O nanocomposites prepared by the facile thermal decomposition of a new copper precursor. Nanomed J 7:231

    CAS  Google Scholar 

  35. Lavand AB, Bhatub MN, Malghe YS (2018) Visible light photocatalytic degradation of malachite green using modified Titania. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2017.05.019

    Article  Google Scholar 

  36. Rabie AM, Abukhadra MR, Rady AM, Ahmed SA, Labena A, Mohamed HSH, Betiha MA, Shim JJ (2020) Instantaneous photocatalytic degradation of malachite green dye under visible light using novel green Co–ZnO/ algae composites. Res Chem Intermed. https://doi.org/10.1007/s11164-019-04074-x

    Article  Google Scholar 

  37. Arsalani N, Bazazi S, Abuali M, Jodeyri S (2019) A new method for preparing ZnO/CNT nanocomposites with enhanced photocatalytic degradation of malachite green under visible light. J Photochem Photobiol A Chem. https://doi.org/10.1016/j.jphotochem.2019.112207

    Article  Google Scholar 

  38. Mark JA, Venkatachalam A, Pramothkumar A, Senthilkumar N, Jothivenkatachalam K, Prince Jesuraj J (2020) Investigation on structural, optical and photocatalytic activity of CoMn2O4 nanoparticles prepared via simple co-precipitation method. Phys B Phys Condens Matter. https://doi.org/10.1016/j.physb.2020.412349

    Article  Google Scholar 

  39. Hasan I, Bhatia D, Walia S, Singh P (2020) Removal of malachite green by polyacrylamide-g-chitosan γ-Fe2O3 nanocomposite an application of central composite design. Singh Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2020.100378

    Article  Google Scholar 

  40. Saad AM, Abukhadra MR, Abdel-Kader AS, Elzanaty Al M, Mady AH, Betiha MA, Shim JJ, Rabie AM (2020) Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. J Environ Manage 258:110043

    Article  CAS  Google Scholar 

  41. Solis-Casados A, Martinez-Pena J, Hernandez-Lopez S, Escobar-Alarcon L (2020) Photocatalytic degradation of the malachite green dye with simulated solar light using TiO2 modified with Sn and Eu. Top Catal. https://doi.org/10.1007/s11244-020-01240-z

    Article  Google Scholar 

  42. Hakimyfard A, Tahmasebi N, Samimifar M, Naghizadeh M (2020) Pure and Gd3+, Tb3+ and Ho3+-doped As2Ni3O8: a new visible light induced photocatalyst for the photodegradation of malachite green water pollutant. J Nanostruct 10:9–19

    Article  CAS  Google Scholar 

  43. Das CK, Dhar SS (2020) Rapid catalytic degradation of malachite green by MgFe2O4 nanoparticles in presence of H2O2. J Alloys Compd 828:154462

    Article  CAS  Google Scholar 

  44. Surendra BS, Shekhar TRS, Veerabhadraswamy M, Nagaswarupa HP, Prashantha SC, Geethanjali GC, Likitha C (2020) Probe sonication synthesis of ZnFe2O4 NPs for the photocatalytic degradation of dyes and effect of treated wastewater on growth of plants. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2020.137286

    Article  Google Scholar 

  45. Mohameda A, Ghobaraa MM, Abdelmaksoud MK, Mohamed GG (2019) A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers. Sep Purif Technol 210:935–942

    Article  Google Scholar 

  46. Chi H, Wang Z, He X, Zhang J, Wang D, Ma J (2019) Activation of peroxymonosulfate system by copper-based catalyst for degradation of naproxen. Mech Pathw Chemosphere 228:54–64

    Article  CAS  Google Scholar 

  47. Cao J, Lai L, Lai B, Yao G, Chen X, Song L (2019) Degradation of tetracycline by peroxymonosulfate activated with zerovalentiron: Performance, intermediates, toxicity and mechanism. Chem Eng J 364:45–56

    Article  CAS  Google Scholar 

  48. Ahna Y-Y, Baeb H, Kimc H-I, Kimd S-H, Kime J-H, Leef S-G, Leea J (2019) Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance. Appl Catal B: Environ 241:561–569

    Article  Google Scholar 

  49. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  50. Abukhadra MR, Shaban M, Abd El Samad MA (2018) Enhanced photocatalytic removal of Safranin-T dye under sunlight within minute time intervals using heulandite/polyaniline@ nickel oxide composite as a novel photocatalyst. Ecotoxicol Environ Saf 162:261–271

    Article  CAS  Google Scholar 

  51. Mohamed F, Abukhadra MR, Shaban M (2018) Removal of Safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci Total Environ 640:352–363

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from General Direction of Scientific Research and of Technological Development of Algeria (DGRSDT/MESRS) in collaboration with university of Limoges (PEIRENE EA7500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Baudu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, M., Bouras, O., Hadjersi, T. et al. Synthesis of CuO-modified silicon nanowires as a photocatalyst for the degradation of malachite green. Reac Kinet Mech Cat 134, 971–987 (2021). https://doi.org/10.1007/s11144-021-02106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02106-5

Keywords

Navigation