Skip to main content
Log in

Kinetics and mechanism of antioxidant action of triterpenoids in the liquid-phase oxidation reaction of 1,4-dioxane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the initiated oxidation of 1,4-dioxane in the presence of azepanobetulin and methyl-3-(hydroxyimino)-lup-20(29)en-28-oate additives has been studied. It was found that the introduction of minor additives of these substances into 1,4-dioxane oxidized in the initiated mode leads to the appearance of induction periods on the kinetic curves of oxygen absorption. It was found that the stoichiometric coefficient of inhibition f, the value of which is proportional to the number of peroxyl radicals that interact with one inhibitor molecule, resulting in a oxidation chain break, is >  > 2, which is explained by the reaction of regeneration of antioxidant molecules. The possibility of participation in this reaction of the 2-hydroxy-1,4-dioxane molecule, which is an intermediate product of 1,4-dioxane oxidation, is discussed. Oxidation of this product leads to the formation of hydroxyperoxyl radicals, which, according to a previously established mechanism, are capable of reducing the original antioxidant molecule from its radical in the act of chain termination. A reaction mechanism is formulated that satisfactorily describes the experimental results. A mathematical model of the reaction was formulated, the study of which, with the help of the «ChimKinOptima» software complex, made it possible to satisfactorily describe the experimental kinetic curves as well as to obtain the kinetic curve of the accumulation of hydroperoxide, the primary product of 1,4-dioxane oxidation, which was not observed in the experiment, and to determine the reaction rate constants included in the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from the experimental kinetic curve, 1 = 5.0 × 10–6 mol/L, 2 = 6.5 × 10–6 mol/L

Fig. 5

Similar content being viewed by others

References

  1. Liebscher G, Vanchangiri K, Mueller T, Feige K, Cavalleri JM, Paschke R (2016) Chem Biol Interact 246:20. https://doi.org/10.1016/j.cbi.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  2. Periasamy G, Teketelew G, Gebrelibanos M, Sintayehu B, Gebrehiwot M, Karim A, Geremedhin G (2014) Arch Appl Sci Res 6(3):47

    Google Scholar 

  3. Król SK, Kiełbus M, Rivero-Müller A, Stepulak A (2015). Bio Med Res Int. https://doi.org/10.1155/2015/584189

    Article  Google Scholar 

  4. Zhang DM, Xu HG, Wang L, Li YJ, Sun PH, Wu XM, Wang GJ, Chen WM, Ye WC (2015) Med Res Rev 35(6):1127

    Article  Google Scholar 

  5. Baglin I, Poumaroux A, Nour M, Tan K, Mitaine-Offer AC, Lacaille-Dubois MA, Chauffert B, Cave CJ (2003) Enzyme Inhib Med Chem 18:111

    Article  CAS  Google Scholar 

  6. Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeve SN, Savinova OV, Tolstikov GA (2003) Bioorg Med Chem Lett 13:3549. https://doi.org/10.1016/s0960-894x(03)00714-5

    Article  CAS  PubMed  Google Scholar 

  7. Deng Y, Snyder JK (2002) J Org Chem 67:2864. https://doi.org/10.1021/jo010929h

    Article  CAS  PubMed  Google Scholar 

  8. Flekhter OB, Nigmatullina LR, Baltina LA, Karachurina LT, Galin FZ, Zarudii FS, Tolstikov GA, Boreko EI, Pavlova NI, Nikolaeva SN, Savinova OV (2002) J Pharm Chem 36:484. https://doi.org/10.1023/A:1021844705853

    Article  CAS  Google Scholar 

  9. Mukherjee R, Jaggi M, Siddiqui MJA, Srivastava SK, Rajendran P, Vardhan A, Burman AC (2004) Bioorg Med Chem Lett 14:4087. https://doi.org/10.1016/j.bmcl.2004.05.034

    Article  CAS  PubMed  Google Scholar 

  10. Medvedeva NI, Kazakova OB, Lopatina TV, Smirnova IE, Giniyatullina GV, Baikova IP, Kataev VE (2018) Eur J Med Chem 143:464. https://doi.org/10.1016/j.ejmech.2017.11.035

    Article  CAS  PubMed  Google Scholar 

  11. Khairullina VR, Gerchikov AYA, Safarova AB, Khalitova RR, Spivak AYU, Shakurova ER, Odinokov VN (2011) Kinet Catal 52(2):186. https://doi.org/10.1134/S0023158411020091

    Article  CAS  Google Scholar 

  12. Amorati R, Baschieri A, Valgimigli L (2017). J Chem. https://doi.org/10.1155/2017/6369358

    Article  Google Scholar 

  13. Khusnutdinova EF, Petrova AV, Faskhutdinova LN, Kazakova OB (2018) Russian Biother J 17:78

    Article  Google Scholar 

  14. Lopatina TV, Medvedeva NI, Baykova IP, Iskhakov AS, Kazakova OB (2019) Bioorg Chem 45(4):419. https://doi.org/10.1134/S0132342319040067)

    Article  Google Scholar 

  15. Ingold KU, Pratt DA (2014) Chem Rev 114(18):9022. https://doi.org/10.1021/cr500226n

    Article  CAS  PubMed  Google Scholar 

  16. Grabovskiy SA, Grabovskaya YUS, Antipin AV, Kabalnova NN (2021) Kinet Catal 62(1):14. https://doi.org/10.1134/S002315842101002X

    Article  Google Scholar 

  17. Gordon A, Ford R (1976) Sputnik Chemist. Mir, Moscow

  18. Yakupova R, Nasibullina RA, Shamukaev VA, Sultanova RM, Safiullin RL (2020) Kinet Catal 61(2):232. https://doi.org/10.1134/S0023158420020123

    Article  CAS  Google Scholar 

  19. Moroni AF (1967) Makromol Chem 105(6):43

    Article  CAS  Google Scholar 

  20. Strongin RG, Sergeev YAD Dordrecht (2000) Kluver Academic Publishers. The Netherlands

  21. Strongin RG, Gergel VP, Gorodetsky SYU, Grishagin VA, Markina MV (2002) Modern methods of making optimal decisions. N. Novgorod: Publishing house of NNSU

  22. Tikhonova MV, Garifullina GG, Gerchikov AYA, Spivak SI (2014) Int J Chem Kinet 46(4):220. https://doi.org/10.1002/kin.20848

    Article  CAS  Google Scholar 

  23. Tikhonova MV, Maskov DF, Spivak SI, Gubaidullin IM Program complex “KhimKinOptima” for mathematical modeling and optimization of chemical reactions based on kinetics using parallel computations and a database: evidence of registration of an electronic resource // INIPI RAO OFERNiO. No. 19247. Date of registration. 05/30/2013

  24. Gerchikov AYA, Sharipova GM, Akhatova GR, Mustafin AG, Sakhibgareeva MV, Spivak SI (2015) Kinet Catal 56(5):563. https://doi.org/10.1134/S0023158415050067

    Article  CAS  Google Scholar 

  25. Gerchikov AYA, Akhatova GR, Sharipova GM, Mustafin AG, Sakhibgareeva MV, Spivak SI (2015) Kinet Catal 56(3):300. https://doi.org/10.1134/S0023158415030052

    Article  CAS  Google Scholar 

  26. Sharipova GM, Bulyakova RD, Safarova IV, Gerchikov AYA (2016) Bulletin of the Bashkir University 21(4):935

  27. Gerchikov AYA, Sharipova GM, Safarova IV, Sakhibgareeva MV, Spivak SI (2017) J Phys Chem 96(6):957. https://doi.org/10.1134/s0036024417060103

    Article  CAS  Google Scholar 

  28. Gerchikov AYA, Sharipova GM, Safarova IV, Kurmakaeva NV, Hairullina VR, Spivak SI (2020) Reac Kinet Mech Cat 131:89. https://doi.org/10.1007/s11144-020-01836-2

    Article  CAS  Google Scholar 

  29. Cadenas E (1997) BioFactors 6:391

    Article  CAS  Google Scholar 

  30. Nimse SB, Pal D (2015) RSC Adv 5(35):27986. https://doi.org/10.1039/C4RA13315C

    Article  CAS  Google Scholar 

  31. Denisov ET, Azatian VV (2000) Inhibition of Chain Reactions. Gordon and Breach Sci. Publishers, London

  32. Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer. 2015: 1–135

  33. Denisov ET, Kharitonov VV (1963) Izv. Academy of Sciences of the USSR. Ser. Chem. 12: 2222

  34. Emanuel NM, Denisov ET, Maizus EK (1965) Chain reactions of oxidation of hydrocarbons in the liquid phase // Moscow. Ed. The science

  35. Vardanyan RL, Kharitonov VV, Denisov ET (1970) Izv. Academy of Sciences of the USSR. Ser. Chem. 7: 1536

  36. Abdullaeva AS, Timashova EA, Bukin EYU, Oshanina IV, Brook LG, Temkin ON (2008) Bull MITHT 3(4):63

    Google Scholar 

Download references

Acknowledgements

The work is supported by RSF, Project No. 19-73-20073. The authors express their gratitude to the Laboratory of Insect Bioregulators, UfICh UFIC RAS, represented by Dr. Kazakova O.B., for kindly providing the substances for this study.

Funding

This study was funded by Russian Science Foundation (19-73-20073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Sharipova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharipova, G.M., Gerchikov, A.Y., Safarova, I.V. et al. Kinetics and mechanism of antioxidant action of triterpenoids in the liquid-phase oxidation reaction of 1,4-dioxane. Reac Kinet Mech Cat 134, 629–640 (2021). https://doi.org/10.1007/s11144-021-02103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02103-8

Keywords

Navigation