Skip to main content
Log in

Methanation of CO2 from flue gas: experimental study on the impact of pollutants

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The current work determines the maximum concentrations of pollutants that interfere significantly in the process, mainly in the catalyst. With this, the study tested the impact of oxygen, sulfur dioxide and nitrogen monoxide on NiO/SiO2 commercial catalyst more used in this process. Besides this, from reactions with and without contaminants, the catalyst was characterized through TGA, FESEM and TEM in order to evaluate the impact of each element on its morphology. Experiments with the presence of the oxygen showed that the O2 consumes the hydrogen and produces more water, reducing the CO2 conversion and CH4 formation. Sulfur showed a significant impact at the reducing of its activity catalyst in concentrations above 5 ppm. Nitrogen monoxide, which is a major component of NOx showed to be little harmful to the catalyst, changing the reaction stability at the CO2 conversion. Both NO and SO2 changed the catalyst morphology and ripped apart the nickel particles from the support, decreasing the catalyst activity over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koschany F, Schlereth D, Hinrichsen O (2016) On the kinetics of the methanation of carbon dioxide on coprecipitated NiAl(O)x. Appl Catal B Environ 181:504–516. https://doi.org/10.1016/j.apcatb.2015.07.026

    Article  CAS  Google Scholar 

  2. Stangeland K, Kalai D, Li H, Yu Z (2017) CO2 methanation: the effect of catalysts and reaction conditions. Energy Procedia 105:2022–2027. https://doi.org/10.1016/j.egypro.2017.03.577

    Article  CAS  Google Scholar 

  3. Vieira MO, Monteiro WF, Neto BS et al (2019) Chemical fixation of CO2: the influence of linear amphiphilic anions on surface active ionic liquids (SAILs) as catalysts for synthesis of cyclic carbonates under solvent-free conditions. React Kinet Mech Cat 126:987–1001. https://doi.org/10.1007/s11144-019-01544-6

    Article  CAS  Google Scholar 

  4. (2018) MAHA ENERGY AB Annual Report

  5. Yen HW, Ho SH, Chen CY, Chang JS (2015) CO2, NOx and SOx removal from flue gas via microalgae cultivation: a critical review. Biotechnol J 10:829–839. https://doi.org/10.1002/biot.201400707

    Article  CAS  PubMed  Google Scholar 

  6. Monteiro WF, Vieira MO, Calgaro CO et al (2019) Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts. Fuel 253:713–721. https://doi.org/10.1016/j.fuel.2019.05.019

    Article  CAS  Google Scholar 

  7. Müller K, Fleige M, Rachow F, Schmeißer D (2013) Sabatier based CO2-methanation of flue gas emitted by conventional power plants. Energy Procedia 40:240–248. https://doi.org/10.1016/j.egypro.2013.08.028

    Article  CAS  Google Scholar 

  8. Rönsch S, Schneider J, Matthischke S et al (2016) Review on methanation: from fundamentals to current projects. Fuel 166:276–296. https://doi.org/10.1016/j.fuel.2015.10.111

    Article  CAS  Google Scholar 

  9. Rönsch S, Köchermann J, Schneider J, Matthischke S (2016) Global reaction kinetics of CO and CO2 methanation for dynamic process modeling. Chem Eng Technol 39:208–218. https://doi.org/10.1002/ceat.201500327

    Article  CAS  Google Scholar 

  10. Xu L, Wen X, Chen M et al (2020) Mesoporous Ce-Zr solid solutions supported Ni-based catalysts for low-temperature CO2 methanation by tuning the reaction intermediates. Fuel 282:118813. https://doi.org/10.1016/j.fuel.2020.118813

    Article  CAS  Google Scholar 

  11. Lv C, Xu L, Chen M et al (2020) Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO2 methanation. Fuel 278:118333. https://doi.org/10.1016/j.fuel.2020.118333

    Article  CAS  Google Scholar 

  12. Loder A, Siebenhofer M, Lux S (2020) The reaction kinetics of CO2 methanation on a bifunctional Ni/MgO catalyst. J Ind Eng Chem 85:196–207. https://doi.org/10.1016/j.jiec.2020.02.001

    Article  CAS  Google Scholar 

  13. Abelló S, Berrueco C, Montané D (2013) High-loaded nickel-alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG). Fuel 113:598–609. https://doi.org/10.1016/j.fuel.2013.06.012

    Article  CAS  Google Scholar 

  14. Becker WL, Penev M, Braun RJ (2018) Production of synthetic natural gas from carbon dioxide and renewably generated hydrogen: a techno-economic analysis of a power-to-gas strategy. J Energy Resour Technol Trans ASME. https://doi.org/10.1115/1.4041381

    Article  Google Scholar 

  15. Ghaib K, Ben-Fares FZ (2018) Power-to-methane: a state-of-the-art review. Renew Sustain Energy Rev 81:433–446. https://doi.org/10.1016/j.rser.2017.08.004

    Article  CAS  Google Scholar 

  16. Baraj E, Snajdrova V, Hlincik T, Ciahotny K (2016) The influence of sulphur dioxide on the methanation activity of a nickel based catalyst. Int J Adv Sci 4:125–128

    Google Scholar 

  17. Czekaj I, Struis R, Wambach J, Biollaz S (2011) Sulphur poisoning of Ni catalysts used in the SNG production from biomass: computational studies. Catal Today 176:429–432. https://doi.org/10.1016/j.cattod.2010.10.078

    Article  CAS  Google Scholar 

  18. Bartholomew CH, Weatherbee GD, Jarvi GA (1979) Sulfur poisoning of nickel methanation catalysts. I. In situ deactivation by H2S of nickel and nickel bimetallics. J Catal 60:257–269. https://doi.org/10.1016/0021-9517(79)90147-7

    Article  CAS  Google Scholar 

  19. Toemen S, Bakar WAWA, Ali R (2014) Copper/nickel/manganese doped cerium oxides based catalysts for hydrogenation of CO2. Bull Korean Chem Soc 35:2349–2356. https://doi.org/10.5012/bkcs.2014.35.8.2349

    Article  CAS  Google Scholar 

  20. Hausberger AL, Atwood K, Knight CB (1975) Development of methanation catalysts for synthetic natural gas processes. Am Chem Soc. https://doi.org/10.1021/ba-1975-0146.ch003

    Article  Google Scholar 

  21. Castellani B, Gambelli AM, Morini E et al (2017) Experimental investigation on CO2 methanation process for solar energy storage compared to CO2-based methanol synthesis. Energies 10:1–13. https://doi.org/10.3390/en10070855

    Article  CAS  Google Scholar 

  22. Danaci S, Protasova L, Lefevere J et al (2016) Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts. Catal Today 273:234–243. https://doi.org/10.1016/j.cattod.2016.04.019

    Article  CAS  Google Scholar 

  23. He B, Zhao Q, Zeng Z et al (2015) Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core–shell catalyst for CO oxidation at low temperature. J Mater Sci 50:6339–6348. https://doi.org/10.1007/s10853-015-9181-z

    Article  CAS  Google Scholar 

  24. Ahmad W, Al-Matar A, Shawabkeh R, Rana A (2016) An experimental and thermodynamic study for conversion of CO2 to CO and methane over Cu-K/Al2O3. J Environ Chem Eng 4:2725–2735. https://doi.org/10.1016/j.jece.2016.05.019

    Article  CAS  Google Scholar 

  25. Falcinelli S, Capriccioli A, Pirani F et al (2017) Methane production by CO2 hydrogenation reaction with and without solid phase catalysis. Fuel 209:802–811. https://doi.org/10.1016/j.fuel.2017.07.109

    Article  CAS  Google Scholar 

  26. Granitsiotis G (2017) Methanation of carbon dioxide experimental research of separation enhanced methanation of CO2. Delft University of Technology

  27. Lazdans A, Dace E, Gusca J (2016) Development of the experimental scheme for methanation process. Energy Procedia 95:540–545. https://doi.org/10.1016/j.egypro.2016.09.082

    Article  CAS  Google Scholar 

  28. Wang S, Schrunk ET, Mahajan H, Farrauto RJ (2017) The role of ruthenium in CO2 capture and catalytic conversion to fuel by dual function materials (DFM). Catalysts 7:1–13. https://doi.org/10.3390/catal7030088

    Article  CAS  Google Scholar 

  29. Lars J, Ehimen EA, Born JBH-N (2015) Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation. Bioresour Technol 178:323–329. https://doi.org/10.1016/j.biortech.2014.10.069

    Article  CAS  Google Scholar 

  30. Chapel DG, Mariz CL, Ernest J (1999) Recovery of CO2 from flue gases : commercial trends. Can Soc Chem Eng Annu Meet. https://doi.org/10.1016/j.apenergy.2013.03.089

    Article  Google Scholar 

  31. Onarheim K, Santos S, Kangas P, Hankalin V (2017) Performance and costs of CCS in the pulp and paper industry part 1: performance of amine-based post-combustion CO2 capture. Int J Greenh Gas Control 59:58–73. https://doi.org/10.1016/j.ijggc.2017.02.008

    Article  CAS  Google Scholar 

  32. Kiendl I, Klemm M, Clemens A, Herrman A (2014) Dilute gas methanation of synthesis gas from biomass gasification. Fuel 123:211–217. https://doi.org/10.1016/j.fuel.2014.01.036

    Article  CAS  Google Scholar 

  33. Matthischke S, Krüger R, Rönsch S, Güttel R (2016) Unsteady-state methanation of carbon dioxide in a fixed-bed recycle reactor: experimental results for transient flow rate ramps. Fuel Process Technol 153:87–93. https://doi.org/10.1016/j.fuproc.2016.07.021

    Article  CAS  Google Scholar 

  34. Miguel CV, Mendes A, Madeira LM (2018) Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst. J CO2 Util 25:128–136. https://doi.org/10.1016/j.jcou.2018.03.011

    Article  CAS  Google Scholar 

  35. Vakkilainen E (2005) Kraft recovery boilers: principles and practice, 2nd ed

  36. Miao B, Ma SSK, Wang X et al (2016) Catalysis mechanisms of CO2 and CO methanation. Catal Sci Technol 6:4048–4058. https://doi.org/10.1039/c6cy00478d

    Article  CAS  Google Scholar 

  37. Struis RPWJ, Schildhauer TJ, Czekaj I et al (2009) Sulphur poisoning of Ni catalysts in the SNG production from biomass: a TPO/XPS/XAS study. Appl Catal A Gen 362:121–128. https://doi.org/10.1016/j.apcata.2009.04.030

    Article  CAS  Google Scholar 

  38. Legras B, Ordomsky VV, Dujardin C et al (2014) Impact and detailed action of sulfur in syngas on methane synthesis on ni/γ-Al2O3 catalyst. ACS Catal 4:2785–2791. https://doi.org/10.1021/cs500436f

    Article  CAS  Google Scholar 

  39. Agrawal PK, Katzer JR, Manogue WH (1982) Methanation over transition-metal catalysts. J Catal 74:332–342

    Article  CAS  Google Scholar 

  40. Yuan C, Yao N, Wang X et al (2015) The SiO2 supported bimetallic Ni-Ru particles: a good sulfur-tolerant catalyst for methanation reaction. Chem Eng J 260:1–10. https://doi.org/10.1016/j.cej.2014.08.079

    Article  CAS  Google Scholar 

  41. Chen X, Jiang J, Yan F et al (2017) Dry reforming of model biogas on a Ni/SiO2 catalyst: overall performance and mechanisms of sulfur poisoning and regeneration. ACS Sustain Chem Eng 5:10248–10257. https://doi.org/10.1021/acssuschemeng.7b02251

    Article  CAS  Google Scholar 

  42. Li X, Li D, Tian H et al (2017) Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl Catal B Environ 202:683–694. https://doi.org/10.1016/j.apcatb.2016.09.071

    Article  CAS  Google Scholar 

  43. Zhao J, Zhou W, Ma J (2014) Pretreatment as the crucial step for biogas reforming over Ni-Co bimetallic catalyst: a mechanistic study of CO2 pretreatment. Int J Hydrogen Energy 39:13429–13436. https://doi.org/10.1016/j.ijhydene.2014.04.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Council (CNPq) and the Pontifical Catholic University of Rio Grande do Sul (PUCRS) for technical support, and the Central Laboratory of Microscopy and Microanalysis (LabCEMM/PUCRS) for the morphological analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogerio V. Lourega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araujo, G.E., de Castro, J.H., Monteiro, W.F. et al. Methanation of CO2 from flue gas: experimental study on the impact of pollutants. Reac Kinet Mech Cat 134, 743–757 (2021). https://doi.org/10.1007/s11144-021-02092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02092-8

Keywords

Navigation