Skip to main content
Log in

Kinetic modeling of CuO/CeO2 and CuO/Nb2O5 as oxygen carriers in the production of syngas

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Oxygen carriers such as CuO/CeO2 and CuO/Nb2O5 were found to have very good selectivity to syngas products when used in chemical looping reforming. The oxygen carriers with 10% CuO has been applied in partially oxidizing liquefied petroleum gas in a chemical looping reforming process at 800 °C and the kinetic model of the processes were developed and then validated with the experimental data. The results show that first order kinetic, 3D contraction and third order kinetic models gave best fits for CuO/CeO2 powder, CuO/CeO2 pellets and CuO/Nb2O5. These resulted in rate constants of 0.0836 s−1, 0.0202 s−1, 0.1075 s−1 and 0.0682 s−1 for CuO/CeO2 powder, CuO/CeO2 pellets, CuO/Nb2O5 powder and CuO/Nb2O5 pellets. Using the rate constants, the model results were found to give good correlations when compared to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu C, Li K, Wang H, Zhu X, Wei Y, Zheng M, Zeng C (2018) Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics. Appl Energy 211:1–14. https://doi.org/10.1016/j.apenergy.2017.11.049

    Article  CAS  Google Scholar 

  2. Forutan HR, Karimi E, Hafizi A, Rahimpour MR, Keshavarz P (2015) Expert representation chemical looping reforming: A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al 2 O 3. J Ind Eng Chem 21:900–911. https://doi.org/10.1016/j.jiec.2014.04.031

    Article  CAS  Google Scholar 

  3. He F, Wei Y, Li H, Wang H (2009) Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides. Energy Fuels 23(4):2095–2102. https://doi.org/10.1021/ef800922m

    Article  CAS  Google Scholar 

  4. Shahbaz M, Yusup S, Inayat A, Patrick DO, Pratama A, Ammar M (2017) Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash. Biores Technol 241:284–295. https://doi.org/10.1016/j.biortech.2017.05.119

    Article  CAS  Google Scholar 

  5. Velasco JA, Lopez L, Velásquez M, Boutonnet M, Cabrera S, Järås S (2010) Gas to liquids: a technology for natural gas industrialization in Bolivia. J Nat Gas Sci Eng 2(5):222–228. https://doi.org/10.1016/j.jngse.2010.10.001

    Article  CAS  Google Scholar 

  6. Gu Z, Li K, Wang H, Wei Y, Yan D, Qiao T (2013) Syngas production from methane over CeO2-Fe2O3 mixed oxides using a chemical-looping method. Kinet Catal 54(3):326–333. https://doi.org/10.1134/S002315841303004X

    Article  CAS  Google Scholar 

  7. Genovese NA, Gorlani A, Arroyo PAH (2005) GTL technology and it’s role in the world energy markets. Scuola Mattei.

  8. Wang P, Howard B, Means N, Shekhawat D, Berry D (2019) Coal chemical-looping with oxygen uncoupling (CLOU) using a Cu-based oxygen carrier derived from natural minerals. Energies 12(8):1453. https://doi.org/10.3390/en12081453

    Article  CAS  Google Scholar 

  9. Zhang J, Zhao N, Wei W, Sun Y (2010) Partial oxidation of methane over Ni/Mg/Al/La mixed oxides prepared from layered double hydrotalcites. Int J Hydrogen Energy 35(21):11776–11786. https://doi.org/10.1016/j.ijhydene.2010.08.025

    Article  CAS  Google Scholar 

  10. Li D, Xu R, Gu Z, Zhu X, Qing S, Li K (2020) Chemical-looping conversion of methane: a review. Energ Technol 8(8):1900925. https://doi.org/10.1002/ente.201900925

    Article  CAS  Google Scholar 

  11. Ismail OS, Umukoro GE (2016) Modelling combustion reactions for gas flaring and its resulting emissions. J King Saud Univ Eng Sci 28(2):130–140. https://doi.org/10.1016/j.jksues.2014.02.003

    Article  Google Scholar 

  12. Chen Y-Y, Nadgouda S, Shah V, Fan L-S, Tong A (2020) Oxidation kinetic modelling of Fe-based oxygen carriers for chemical looping applications: Impact of the topochemical effect. Appl Energy 279:115701. https://doi.org/10.1016/j.apenergy.2020.115701

    Article  CAS  Google Scholar 

  13. Huang J, Liu W, Hu W, Metcalfe I, Yang Y, Liu B (2019) Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications. Appl Energy 236:635–647. https://doi.org/10.1016/j.apenergy.2018.12.029

    Article  CAS  Google Scholar 

  14. Li K, Wang H, Wei Y (2013) Syngas generation from methane using a chemical-looping concept: a review of oxygen carriers. J Chem. https://doi.org/10.1155/2013/294817

    Article  Google Scholar 

  15. Khan MN, Shamim T (2017) Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system. Int J Hydrogen Energy 42(24):15745–15760. https://doi.org/10.1016/j.ijhydene.2017.05.037

    Article  CAS  Google Scholar 

  16. Kang K-S, Kim C-H, Bae K-K, Cho W-C, Kim S-H, Park C-S (2010) Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production. Int J Hydrogen Energy 35(22):12246–12254. https://doi.org/10.1016/j.ijhydene.2010.08.043

    Article  CAS  Google Scholar 

  17. Yan Y, Xu L, Wang L, Fu K, Tang M, Fan M, Ma X (2018) Syngas Production from chemical-looping reforming of methane using iron-doped cerium oxides. Energ Technol 6(9):1610–1617. https://doi.org/10.1002/ente.201700884

    Article  CAS  Google Scholar 

  18. Adnan MA (2020) Integrated diesel fueled chemical looping combustion for power generation and CO2 capture – performance evaluation based on exergy analysis. Energy Conv Manag 11.

  19. Bhavsar S, Veser G (2014) Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane. RSC Adv 4:47254–47267. https://doi.org/10.1039/C4RA06437B

    Article  CAS  Google Scholar 

  20. Han L, Zhou Z, Bollas GM (2016) Model-based analysis of chemical-looping combustion experiments. Part II: optimal design of CH4-NiO reduction experiments. AIChE J 62(7), 2432–2446.

  21. Wang Y, Zheng Y, Wang Y, Li K, Wang Y, Jiang L, Wei Y, Wang H (2019) Syngas production modified by oxygen vacancies over CeO2-ZrO2-CuO oxygen carrier via chemical looping reforming of methane. Appl Surf Sci 481:151–160. https://doi.org/10.1016/j.apsusc.2019.03.050

    Article  CAS  Google Scholar 

  22. Yang J, Wei Y, Yang J, Xiang H, Ma L, Zhang W, Wang L, Peng Y, Liu H (2019) Syngas production by chemical looping gasification using Fe supported on phosphogypsum compound oxygen carrier. Energy 168:126–135. https://doi.org/10.1016/j.energy.2018.11.106

    Article  CAS  Google Scholar 

  23. Yan Y, Mattisson T, Moldenhauer P, Anthony EJ, Clough PT (2020) Applying machine learning algorithms in estimating the performance of heterogeneous, multi-component materials as oxygen carriers for chemical-looping processes. Chem Eng J 387:124072. https://doi.org/10.1016/j.cej.2020.124072

    Article  CAS  Google Scholar 

  24. Lyngfelt A (2013) Chemical looping combustion (CLC). In Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification (pp. 895–930). Elsevier. https://doi.org/10.1533/9780857098801.4.895

  25. Zeng L, He F, Li F, Fan L-S (2012) Coal-direct chemical looping gasification for hydrogen production: reactor modeling and process simulation. Energy Fuels 26(6):3680–3690. https://doi.org/10.1021/ef3003685

    Article  CAS  Google Scholar 

  26. Luo S, Zeng L, Fan L-S (2015) Chemical looping technology: oxygen carrier characteristics. Annu Rev Chem Biomol Eng 6(1):53–75. https://doi.org/10.1146/annurev-chembioeng-060713-040334

    Article  CAS  PubMed  Google Scholar 

  27. Aghabararnejad M, Patience GS, Chaouki J (2014) TGA and kinetic modelling of Co, Mn and Cu oxides for chemical looping gasification (CLG). Canadian J Chem Eng 92(11):1903–1910. https://doi.org/10.1002/cjce.22046

    Article  CAS  Google Scholar 

  28. Arjmand M, Leion H, Mattisson T, Lyngfelt A (2013) ZrO2-supported CuO oxygen carriers for chemical-looping with oxygen uncoupling (CLOU). Energy Procedia 37:550–559. https://doi.org/10.1016/j.egypro.2013.05.141

    Article  CAS  Google Scholar 

  29. Zhao H, Guo L, Zou X (2015) Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier. Appl Energy 157:408–415. https://doi.org/10.1016/j.apenergy.2015.04.093

    Article  CAS  Google Scholar 

  30. Monazam ER, Breault RW, Tian H, Siriwardane R (2015) Reaction kinetics of mixed CuO–Fe 2 O 3 with methane as oxygen carriers for chemical looping combustion. Ind Eng Chem Res 54(48):11966–11974. https://doi.org/10.1021/acs.iecr.5b02848

    Article  CAS  Google Scholar 

  31. Fang H, Haibin L, Zengli Z (2009) Advancements in development of chemical-looping combustion: a review. Int J Chem Eng 2009:1–16. https://doi.org/10.1155/2009/710515

    Article  CAS  Google Scholar 

  32. Fan L-S, Zeng L, Luo S (2015) Chemical-looping technology platform. AIChE J 61(1):2–22. https://doi.org/10.1002/aic.14695

    Article  CAS  Google Scholar 

  33. Li F, Zeng L, Velazquez-Vargas LG, Yoscovits Z, Fan L-S (2010) Syngas chemical looping gasification process: Bench-scale studies and reactor simulations. AIChE J 56(8):2186–2199. https://doi.org/10.1002/aic.12093

    Article  CAS  Google Scholar 

  34. Otsuka K, Wang Y, Nakamura M (1999) Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature. Appl Catal A 183(2):317–324. https://doi.org/10.1016/S0926-860X(99)00070-8

    Article  CAS  Google Scholar 

  35. Liu F (2013) Cerium oxide (CeO2) promoted oxygen carrier development and scale modeling study for chemical looping combustioN (Doctor of Philosophy). University of Kentucky, Lexington, Kentucky

    Google Scholar 

  36. Wei Y, Wang H, He F, Ao X, Zhang C (2007) CeO2 as the oxygen carrier for partial oxidation of methane to synthesis gas in molten salts: thermodynamic analysis and experimental investigation. J Nat Gas Chem 16(1):6–11. https://doi.org/10.1016/S1003-9953(07)60018-8

    Article  CAS  Google Scholar 

  37. Li K, Wang H, Wei Y, Yan D (2010) Direct conversion of methane to synthesis gas using lattice oxygen of CeO2–Fe2O3 complex oxides. Chem Eng J 156(3):512–518. https://doi.org/10.1016/j.cej.2009.04.038

    Article  CAS  Google Scholar 

  38. Li K, Wang H, Wei Y, Yan D (2011) Transformation of methane into synthesis gas using the redox property of Ce–Fe mixed oxides: Effect of calcination temperature. Int J Hydrogen Energy 36(5):3471–3482. https://doi.org/10.1016/j.ijhydene.2010.12.038

    Article  CAS  Google Scholar 

  39. dos Santos PHLNA, Nowak S, Lau-Truong S, Blanchard J, Beaunier P, Rodrigues JAJ, Brayner R (2019) Preparation of niobium-based oxygen carriers by polyol-mediated process and application to chemical-looping reforming. J Nanopart Res 21(5):1–16. https://doi.org/10.1007/s11051-019-4528-z

    Article  CAS  Google Scholar 

  40. Yaremchenko AA, Kharton VV, Veniaminov SA, Belyaev VD, Sobyanin VA, Marques FMB (2007) Methane oxidation by lattice oxygen of CeNbO4+δ. Catal Commun 8(3):335–339. https://doi.org/10.1016/j.catcom.2006.07.004

    Article  CAS  Google Scholar 

  41. Wei Y, Wang H, Li K, Zhu X, Du Y (2010) Preparation and characterization of Ce1-x NixO2 as oxygen carrier for selective oxidation methane to syngas in absence of gaseous oxygen. J Rare Earths 28:357–361. https://doi.org/10.1016/S1002-0721(10)60358-4

    Article  Google Scholar 

  42. Means NC, Burgess WA, Howard BH, Smith MW, Wang P, Shekhawat D (2019) Examining and modeling oxygen uncoupling kinetics of Cu-based oxygen carriers for chemical looping with oxygen uncoupling (CLOU) in a drop tube fluidized bed reactor. Energy Fuels 33(6):5610–5619. https://doi.org/10.1021/acs.energyfuels.9b00338

    Article  CAS  Google Scholar 

  43. Naji A (2011) Kinetic study of chemical looping combustion using iron as an oxygen carrier (Masters). Dalhousie University Halifax, Nova Scotia

    Google Scholar 

  44. Go K, Son S, Kim S (2008) Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production. Int J Hydrogen Energy 33(21):5986–5995. https://doi.org/10.1016/j.ijhydene.2008.05.039

    Article  CAS  Google Scholar 

  45. Monazam ER, Breault RW, Siriwardane R, Richards G, Carpenter S (2013) Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: a global mechanism. Chem Eng J 232:478–487. https://doi.org/10.1016/j.cej.2013.07.091

    Article  CAS  Google Scholar 

  46. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  47. Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer International Publishing, Cham

    Book  Google Scholar 

  48. Bhavsar S, Veser G (2013) Bimetallic Fe–Ni oxygen carriers for chemical looping combustion. Ind Eng Chem Res 52:15342–15352. https://doi.org/10.1021/ie400612g

    Article  CAS  Google Scholar 

  49. Cho P (2005) Development and characterisation of oxygen-carrier materials for chemical-looping combustion. Chalmers University of Technology, Göteborg

    Google Scholar 

  50. Liu F, Chen L, Neathery JK, Saito K, Liu K (2014) Cerium oxide promoted iron-based oxygen carrier for chemical looping combustion. Ind Eng Chem Res 53(42):16341–16348. https://doi.org/10.1021/ie503160b

    Article  CAS  Google Scholar 

  51. Chen S, Soomro A, Yu R, Hu J, Sun Z, Xiang W (2018) Integration of chemical looping combustion and supercritical CO2 cycle for combined heat and power generation with CO2 capture. Energy Convers Manage 167:113–124. https://doi.org/10.1016/j.enconman.2018.04.083

    Article  CAS  Google Scholar 

  52. Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF (2012) Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci 38(2):215–282. https://doi.org/10.1016/j.pecs.2011.09.001

    Article  CAS  Google Scholar 

  53. Chen C, Bollas GM (2020) Design and scheduling of semibatch chemical-looping reactors. Ind Eng Chem Res 59(15):6994–7006. https://doi.org/10.1021/acs.iecr.9b05693

    Article  CAS  Google Scholar 

  54. Lu C, Deng R, Xu R, Zhao Y, Zhu X, Wei Y, Li K (2021) Design of hybrid oxygen carriers with CeO2 particles on MnCo2O4 microspheres for chemical looping combustion. Chem Eng J 404:126554. https://doi.org/10.1016/j.cej.2020.126554

    Article  CAS  Google Scholar 

  55. Solsona B, Sanchis R, Dejoz A, García T, Ruiz-Rodríguez L, López Nieto J, Cecilia J, Rodríguez-Castellón E (2017) Total oxidation of propane using CeO2 and CuO-CeO2 catalysts prepared using templates of different nature. Catalysts 7(12):96. https://doi.org/10.3390/catal7040096

    Article  CAS  Google Scholar 

  56. Chary KVR, Seela KK, Sagar GV, Sreedhar B (2004) Characterization and reactivity of niobia supported copper oxide catalysts. J Phys Chem B 108(2):658–663. https://doi.org/10.1021/jp035738s

    Article  CAS  Google Scholar 

  57. Braga V, Garcia F, Dias J, Dias S (2007) Copper oxide and niobium pentoxide supported on silica-alumina: Synthesis, characterization, and application on diesel soot oxidation. J Catal 247(1):68–77. https://doi.org/10.1016/j.jcat.2006.12.022

    Article  CAS  Google Scholar 

  58. Djinović P, Batista J, Pintar A (2008) Calcination temperature and CuO loading dependence on CuO-CeO2 catalyst activity for water-gas shift reaction. Appl Catal A 347(1):23–33. https://doi.org/10.1016/j.apcata.2008.05.027

    Article  CAS  Google Scholar 

  59. Saucedo MA, Dennis JS, Scott SA (2015) Modelling rates of gasification of a char particle in chemical looping combustion. Proc Combust Inst 35(3):2785–2792. https://doi.org/10.1016/j.proci.2014.07.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am very grateful to Petroleum Technology Development Fund (PTDF), Nigeria providing the fund needed to carry out the research work, and also Dr. A. Atta for his assistance in analyses of the product gases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Saddiq.

Ethics declarations

Conflict of interest

The authors declare that there is no any financial interest that will in any way affect the outcome of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddiq, H.A., Muhammed-Dabo, I.A., Hamza, A. et al. Kinetic modeling of CuO/CeO2 and CuO/Nb2O5 as oxygen carriers in the production of syngas. Reac Kinet Mech Cat 134, 727–742 (2021). https://doi.org/10.1007/s11144-021-02090-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02090-w

Keywords

Navigation