Skip to main content
Log in

Effect of Sn addition on the catalytic performance of a Pd–Cu/attapulgite catalyst for room-temperature CO oxidation under moisture-rich conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Herein, the effect of SnCl4 addition on the catalytic performance of Pd–Cu/attapulgite (Pd–Cu/APT) synthesized by a deposition–precipitation method has been investigated. Compared with Pd–Cu/APT, the suitable addition of Sn has a conspicuous facilitation on the catalytic performance of Pd–Cu–Sn/APT for CO oxidation. The characterization results reveal that the incorporation of Sn gives rise to the formation of SnO2, which conduces to produce the more Cu2Cl(OH)3 active phases and Cu+ species in Pd–Cu–Sn/APT and establish a mutual interaction between Sn and Pd, Cu species. Accordingly, the Pd0 species generated during CO oxidation over Pd–Cu–Sn/APT can be more easily oxidized than those over Pd–Cu/APT. Additionally, the generation of SnO2 is prone to suppress the adsorption of water vapor on the catalyst surface, hence augmenting the water resistance of Pd–Cu–Sn/APT. Therefore, Sn-modified Pd–Cu/APT catalyst exhibits the more excellent catalytic performance for CO oxidation at room temperature under moisture-rich conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Doggali P, Kusaba H, Einaga H et al (2011) J Hazard Mater 186:796–804

    Article  CAS  PubMed  Google Scholar 

  2. Zhang XD, Yang Y, Song L et al (2018) Mol Catal 447:80–89

    Article  CAS  Google Scholar 

  3. Miao YX, Wang J, Li WC (2016) Chinese J Catal 37:1721–1728

    Article  CAS  Google Scholar 

  4. Du N, Zhang H, Ma XY et al (2008) Chem Commun 46:6182–6184

    Article  Google Scholar 

  5. Dong F, Zhao YS, Han WL et al (2017) Mol Catal 439:118–127

    Article  CAS  Google Scholar 

  6. You J, Chen F, Zhao XB et al (2010) J Rare Earth 28:347–352

    Article  Google Scholar 

  7. Gao JJ, Jia CM, Zhang LP et al (2016) J Catal 341:82–90

    Article  CAS  Google Scholar 

  8. Wang YZ, Zhao YX, Gao CG et al (2007) Catal Lett 116:136–142

    Article  CAS  Google Scholar 

  9. Gruenert W, Grossmann D, Noei H et al (2014) Angew Chem Int Edit 53:3245–3249

    Article  CAS  Google Scholar 

  10. Al Soubaihi RM, Saoud KM, Myint MTZ et al (2021) Catalysts 11:131

    Article  CAS  Google Scholar 

  11. Cha BJ, Kim SY, Choi CM et al (2021) Chem Eng J 404:126560

    Article  CAS  Google Scholar 

  12. Li X, Xing LS, Zhao WJ et al (2020) Chem J Chinese U 41:1600–1608

    Google Scholar 

  13. Wang YZ, Fan LY, Shi J et al (2015) Catal Lett 145:1429–1435

    Article  CAS  Google Scholar 

  14. Feng YF, Wang L, Zhang YH et al (2013) Chinese J Catal 34:923–931

    Article  CAS  Google Scholar 

  15. Dey S, Dhal GC, Mohan D et al (2019) J Sci-Adv Mater Dev 4:47–56

    Google Scholar 

  16. Li M, Bi F, Xu Y et al (2019) Acs Catal 9:11676–11684

    Article  CAS  Google Scholar 

  17. Oxford SM, Henao JD, Yang JH et al (2008) Appl Catal A-Gen 339:180–186

    Article  CAS  Google Scholar 

  18. Wang SP, Li W, Dong YY et al (2015) Chinese Chem Lett 26:1359–1363

    Article  CAS  Google Scholar 

  19. Wang YZ, Wang YN, Li X et al (2018) Environ Technol 39:780–786

    Article  CAS  PubMed  Google Scholar 

  20. Zhou FY, Du XX, Yu J et al (2016) Rsc Adv 6:66553–66563

    Article  CAS  Google Scholar 

  21. Wang YZ, Cheng HM, Fan LY et al (2014) J Fuel Chem Tech 42:597–602

    Google Scholar 

  22. Hassan HMA, Betiha MA, Elshaarawy RFM et al (2017) Appl Surf Sci 402:99–107

    Article  CAS  Google Scholar 

  23. Du X, Li HY, Yu J, Xiao X, Shi Z, Mao D, Lu G (2015) Catal Sci Technol 5:3970–3979

    Article  CAS  Google Scholar 

  24. Li X, Wang YZ, Lv TT et al (2019) Catal Surv Asia 23:102–109

    Article  CAS  Google Scholar 

  25. Wang YZ, Shi J, Wu RF et al (2016) Appl Clay Sci 119:126–131

    Article  CAS  Google Scholar 

  26. Xu XL, Sun XF, Han H et al (2015) Appl Surf Sci 355:1254–1260

    Article  CAS  Google Scholar 

  27. Liu Y, Guo Y, Peng HG et al (2016) Appl Catal A-Gen 525:204–214

    Article  CAS  Google Scholar 

  28. Liu Y, Yang P, Li J et al (2015) Rsc Adv 5:98500–98507

    Article  CAS  Google Scholar 

  29. Dong L, Tang Y, Li B et al (2016) Appl Catal B-Environ 180:451–462

    Article  CAS  Google Scholar 

  30. Grass K, Lintz HG (1997) J Catal 172:446–452

    Article  CAS  Google Scholar 

  31. Wang YZ, Fan LY, Wu RF et al (2015) J Fuel Chem Tech 43:1076–1082

    Article  CAS  Google Scholar 

  32. Yuan ZY, Ren TZ, Vantomme A et al (2004) Chem Mater 16:5096–5106

    Article  CAS  Google Scholar 

  33. Cao JL, Shao GS, Wang Y et al (2008) Catal Commun 9:2555–2559

    Article  CAS  Google Scholar 

  34. Feng B, Shi M, Liu JX, et al (2020) J Hazard Mater 394: 122540

    Article  CAS  PubMed  Google Scholar 

  35. Yang HM, Tang AD, Ouyang J et al (2010) J Phys Chem B 114:2390–2398

    Article  CAS  PubMed  Google Scholar 

  36. Han WL, Zhang P, Pan X et al (2013) J Hazard Mater 263:299–306

    Article  CAS  PubMed  Google Scholar 

  37. Wei W, Gao P, Xie JM et al (2013) J Solid State Chem 204:305–313

    Article  CAS  Google Scholar 

  38. Wang FG, Zhang HJ, He DN (2014) Environ Technol 35:347–354

    Article  PubMed  Google Scholar 

  39. Li X, Wang Y, Wei X et al (2020) Mol Catal 491:111002

    Article  CAS  Google Scholar 

  40. Iriarte-Velasco U, Ayastuy JL, Boukha Z et al (2018) Renew Energy 115:641–648

    Article  CAS  Google Scholar 

  41. Chlala D, Giraudon J-M, Nuns N et al (2017) ChemCatChem 9:2275–2283

    Article  CAS  Google Scholar 

  42. Shen YX, Lu GZ, Guo Y et al (2011) Catal Today 175:558–567

    Article  CAS  Google Scholar 

  43. Shen CL, Li HY, Yu J et al (2013) ChemCatChem 5:2813–2817

    Article  CAS  Google Scholar 

  44. Harrison PG, Bailey C, Daniell W et al (1999) Chem Mater 11:3643–3654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support from Shanxi provincial key research and development plan project (Grant No. 201603D121018-1); Natural Science Foundation of Shanxi Province (Grant No. 201801D121043) and the National Natural Science Foundation of China (Grant No. 21673132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhao Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Li, X., Dang, H. et al. Effect of Sn addition on the catalytic performance of a Pd–Cu/attapulgite catalyst for room-temperature CO oxidation under moisture-rich conditions. Reac Kinet Mech Cat 134, 759–775 (2021). https://doi.org/10.1007/s11144-021-02081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02081-x

Keywords

Navigation