Skip to main content
Log in

Kinetics and Langmuir–Hinshelwood mechanism for the catalytic reduction of para-nitrophenol over Cu catalysts supported on chitin and chitosan biopolymers

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Herein we report the performance of cheaper, more efficient and eco-friendlier chitin (CN) and chitosan (CS) biopolymers supported Cu nanoparticles (Cu NPs) catalysts (1.5 wt% Cu/CN) and (4.5 wt% Cu/CS) in the reaction model of para-nitrophenol (p-NP) reduction to para-aminophenol (p-AP) by NaBH4. The catalysts were synthetized with impregnation method and CN was extracted from local shrimp shells wastes, while CS was obtained by the deacetylation of CN. It was found that the activity of 1.5 wt% Cu/CN, with a lower Cu loading, is better than that of 4.5 wt% Cu/CS, which achieved 100% p-NP conversion to p-AP in short reaction times at all studied reaction temperatures. The activity of each catalyst was found to depend on the interaction modes of Cu NPs with the functional groups of CN and CS, which affects the textural parameters of the catalysts and the dispersion of Cu NPs, as revealed by various characterization techniques used. Kinetic of p-NP reduction was found to follows the pseudo-first order with respect to p-NP concentration. The apparent rate constants at T = 25 °C were calculated to be kapp = 0.854 min−1 and 0.350 min−1 for 1.5 wt% Cu/CN and 4.5 wt% Cu/CS catalysts, respectively, which increased with the reaction temperature. Kinetics data of p-NP reduction at T = 25 °C, obtained for various concentrations of reagents, were successfully modeled using the Langmuir–Hinshelwood mechanism. The related kinetic parameters such as the adsorption equilibrium constants K(p-NP), K(\({\text{BH}}_{4}^{ - }\)) and the surface rate constant, k, were calculated. The competitive adsorption between p-NP and \({\text{BH}}_{4}^{ - }\) was shown to control the rate of p-NP reduction to p-AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. González JA, Villanueva ME, Piehl LL, Copello GJ (2015) Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study. Chem Eng J 280:41–48. https://doi.org/10.1016/j.cej.2015.05.112

    Article  CAS  Google Scholar 

  2. Auta M, Hameed BH (2013) Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids Surf B 105:199–206. https://doi.org/10.1016/j.colsurfb.2012.12.021

    Article  CAS  Google Scholar 

  3. Ahmad N, Sultana S, Khan MZ, Sabir S (2020) Chitosan based nanocomposites as efficient adsorbents for water treatment. Mod Age Waste Water Probl. https://doi.org/10.1007/978-3-030-08283-3_4

    Article  Google Scholar 

  4. Shajahan A, Shankar S, Sathiyaseelan A et al (2017) Comparative studies of chitosan and its nanoparticles for the adsorption efficiency of various dyes. Int J Biol Macromol 104:1449–1458. https://doi.org/10.1016/j.ijbiomac.2017.05.128

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Li L, Duan Z et al (2021) Chitosan modified nitrogen-doped porous carbon composite as a highly-efficient adsorbent for phenolic pollutants removal. Colloids Surf A 610:125728. https://doi.org/10.1016/j.colsurfa.2020.125728

    Article  CAS  Google Scholar 

  6. Dandil S, Akin Sahbaz D, Acikgoz C (2019) Adsorption of Cu(II) ions onto crosslinked chitosan/Waste Active Sludge Char (WASC) beads: kinetic, equilibrium, and thermodynamic study. Int J Biol Macromol 136:668–675. https://doi.org/10.1016/j.ijbiomac.2019.06.063

    Article  CAS  PubMed  Google Scholar 

  7. González JA, Bafico JG, Villanueva ME et al (2018) Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material. Carbohydr Polym 188:213–220. https://doi.org/10.1016/j.carbpol.2018.02.021

    Article  CAS  PubMed  Google Scholar 

  8. Molnár Á (2019) The use of chitosan-based metal catalysts in organic transformations. Coord Chem Rev 388:126–171. https://doi.org/10.1016/j.ccr.2019.02.018

    Article  CAS  Google Scholar 

  9. Gates WP, MacLeod AJ, Fehervari A et al (2020) Interactions of per- and polyfluoralkyl substances (PFAS) with landfill liners. Adv Environ Eng Res. https://doi.org/10.21926/aeer.2004007

    Article  Google Scholar 

  10. Anusuya N, Pragathiswaran C, Thulasi G (2020) Catalytic reduction of 4-nitrophenol to 4-amino phenol by chitosan/TiO2-Fe2O3 nanomaterial. Mater Today Proc 37:3759–3763. https://doi.org/10.1016/j.matpr.2020.10.570

    Article  CAS  Google Scholar 

  11. Kavitha T, Kumar S, Prasad V et al (2019) Nio powder synthesized through nickel metal complex degradation for water treatment. Desalin Water Treat 155:216–224. https://doi.org/10.5004/dwt.2019.24054

    Article  CAS  Google Scholar 

  12. Wang Y, Li Y, Liu S, Li B (2015) Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent. Carbohydr Polym 120:53–59. https://doi.org/10.1016/j.carbpol.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Ahlafi H, Moussout H, Boukhlifi F et al (2013) Kinetics of N-deacetylation of chitin extracted from shrimp shells collected from coastal area of Morocco. Mediterr J Chem 2:503–513. https://doi.org/10.13171/mjc.2.3.2013.22.01.20

    Article  Google Scholar 

  14. Aazza M, Ahlafi H, Moussout H et al (2020) Catalytic reduction of nitro-phenolic compounds over Ag, Ni and Co nanoparticles catalysts supported on γ-Al2O3. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.103707

    Article  Google Scholar 

  15. Ma X, Wu G, Dai F et al (2021) Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr Polym 251:117058. https://doi.org/10.1016/j.carbpol.2020.117058

    Article  CAS  PubMed  Google Scholar 

  16. Yu S, Xu X, Feng J et al (2019) Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 560:282–293. https://doi.org/10.1016/j.ijpharm.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Xu XJ, Zheng XC et al (2018) Chitosan supported palladium nanoparticles: the novel catalysts for hydrogen generation from hydrolysis of ammonia borane. Mater Res Bull 103:89–95. https://doi.org/10.1016/j.materresbull.2018.03.013

    Article  CAS  Google Scholar 

  18. Ma F, Li P, Zhang B, Wang Z (2017) The facile synthesis of a chitosan Cu(II) complex by solution plasma process and evaluation of their antioxidant activities. Int J Biol Macromol 103:501–507. https://doi.org/10.1016/j.ijbiomac.2017.04.082

    Article  CAS  PubMed  Google Scholar 

  19. Reyes-Mercado E, Rivas-Loaiza JA, García-Merinos JP et al (2021) Chitosan-supported copper salt and copper metal nanoparticles/copper (I) oxide microcrystals: efficient and recyclable heterogeneous catalysts for the synthesis of bis(indolyl)methanes. Chem Eng Process Process Intensif. https://doi.org/10.1016/j.cep.2020.108201

    Article  Google Scholar 

  20. Gritsch L, Lovell C, Goldmann WH, Boccaccini AR (2018) Fabrication and characterization of copper(II)-chitosan complexes as antibiotic-free antibacterial biomaterial. Carbohydr Polym 179:370–378. https://doi.org/10.1016/j.carbpol.2017.09.095

    Article  CAS  PubMed  Google Scholar 

  21. Akhtar MA, Ilyas K, Dlouhý I et al (2020) Electrophoretic deposition of copper(II)-chitosan complexes for antibacterial coatings. Int J Mol Sci. https://doi.org/10.3390/ijms21072637

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Xue C, Xue Y et al (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917. https://doi.org/10.1016/j.carres.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  23. Hao G, Hu Y, Shi L et al (2021) Physicochemical characteristics of chitosan from swimming crab (Portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci Rep 11:1–9. https://doi.org/10.1038/s41598-021-81318-0

    Article  CAS  Google Scholar 

  24. Ali F, Khan SB, Kamal T et al (2018) Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr Polym 192:217–230. https://doi.org/10.1016/j.carbpol.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  25. Ali F, Khan SB, Kamal T et al (2017) Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr Polym 173:676–689. https://doi.org/10.1016/j.carbpol.2017.05.074

    Article  CAS  PubMed  Google Scholar 

  26. Zayed MF, Eisa WH, Hosam AEHM, Abou Zeid AM (2020) Spectroscopic investigation of chitosan-supported Cu2O/CuO nanocomposite; a separable catalyst for water-pollutants degradation. J Alloys Compd 835:155306. https://doi.org/10.1016/j.jallcom.2020.155306

    Article  CAS  Google Scholar 

  27. Cai Y, Zheng L, Fang Z (2015) Selective adsorption of Cu(II) from an aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor. RSC Adv 5:97435–97445. https://doi.org/10.1039/c5ra16547d

    Article  CAS  Google Scholar 

  28. Bakhsh EM, Ali F, Khan SB et al (2019) Copper nanoparticles embedded chitosan for efficient detection and reduction of nitroaniline. Int J Biol Macromol 131:666–675. https://doi.org/10.1016/j.ijbiomac.2019.03.095

    Article  CAS  PubMed  Google Scholar 

  29. de Souza JF, da Silva GT, Fajardo AR (2017) Chitosan-based film supported copper nanoparticles: a potential and reusable catalyst for the reduction of aromatic nitro compounds. Carbohydr Polym 161:187–196. https://doi.org/10.1016/j.carbpol.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  30. Kassem AA, Abdelhamid HN, Fouad DM, Ibrahim SA (2021) Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@C composite. J Environ Chem Eng 9:104401. https://doi.org/10.1016/j.jece.2020.104401

    Article  CAS  Google Scholar 

  31. Fu Y, Huang T, Jia B et al (2017) Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl Catal B 202:430–437. https://doi.org/10.1016/j.apcatb.2016.09.051

    Article  CAS  Google Scholar 

  32. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ 140:117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031

    Article  CAS  Google Scholar 

  33. Khan MSJ, Kamal T, Ali F et al (2019) Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int J Biol Macromol 132:772–783. https://doi.org/10.1016/j.ijbiomac.2019.03.205

    Article  CAS  PubMed  Google Scholar 

  34. Verma AD, Mandal RK, Sinha I (2015) Kinetics of p-nitrophenol reduction catalyzed by PVP stabilized copper nanoparticles. Catal Lett 145:1885–1892. https://doi.org/10.1007/s10562-015-1605-5

    Article  CAS  Google Scholar 

  35. Wunder S, Polzer F, Lu Y et al (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820. https://doi.org/10.1021/jp101125j

    Article  CAS  Google Scholar 

  36. Kästner C, Thünemann AF (2016) Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 32:7383–7391. https://doi.org/10.1021/acs.langmuir.6b01477

    Article  CAS  PubMed  Google Scholar 

  37. Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/2/1/015009

    Article  Google Scholar 

  38. Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109. https://doi.org/10.1016/j.progpolymsci.2004.12.001

    Article  CAS  Google Scholar 

  39. Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189:519–525. https://doi.org/10.1016/j.jhazmat.2011.02.069

    Article  CAS  PubMed  Google Scholar 

  40. Usman MS, Ibrahim NA, Shameli K et al (2012) Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules 17:14928–14936. https://doi.org/10.3390/molecules171214928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anbinder PS, Macchi C, Amalvy J, Somoza A (2019) A study of the structural changes in a chitosan matrix produced by the adsorption of copper and chromium ions. Carbohydr Polym 222:114987. https://doi.org/10.1016/j.carbpol.2019.114987

    Article  CAS  PubMed  Google Scholar 

  42. Hervés P, Pérez-Lorenzo M, Liz-Marzán LM et al (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587. https://doi.org/10.1039/c2cs35029g

    Article  CAS  PubMed  Google Scholar 

  43. Bingwa N, Meijboom R (2014) Kinetic evaluation of dendrimer-encapsulated palladium nanoparticles in the 4-nitrophenol reduction reaction. J Phys Chem C 118:19849–19858. https://doi.org/10.1021/jp505571p

    Article  CAS  Google Scholar 

  44. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1:908–916. https://doi.org/10.1021/cs200208a

    Article  CAS  Google Scholar 

  45. Gu S, Lu Y, Kaiser J et al (2015) Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Phys Chem Chem Phys 17:28137–28143. https://doi.org/10.1039/c5cp00519a

    Article  CAS  PubMed  Google Scholar 

  46. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by MESRSFC and CNRST − Rabat- Morocco, within the framework of the PPR2 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chadia Mounir.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounir, C., Ahlafi, H., Aazza, M. et al. Kinetics and Langmuir–Hinshelwood mechanism for the catalytic reduction of para-nitrophenol over Cu catalysts supported on chitin and chitosan biopolymers. Reac Kinet Mech Cat 134, 285–302 (2021). https://doi.org/10.1007/s11144-021-02066-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02066-w

Keywords

Navigation