Skip to main content
Log in

Performance of low-content Pd and high-content Co, Ni supported on hierarchical activated carbon for the hydrotreatment of Calophyllum inophyllum oil (CIO)

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A comparative study between a catalyst with a small amount of a noble metal, Pd/HAC, and those with large amounts of non-noble metals, Co/HAC and Ni/HAC, was conducted. Specifically, the activity and selectivity of these catalysts in the hydrotreatment of Calophyllum inophyllum oil were evaluated. The loading metal contents of Pd, Co, and Ni were 0.43, 3.310, and 4.110 wt%. Hierarchical activated carbon (HAC) was synthesized from wasted Merbau Wood through CO2 and H2O activation and used as a support for the metals. Co, Ni, and Pd were impregnated into HAC by using the wet impregnation method. HAC showed a diffraction peak at 26.46°, pore size distribution of 1.356–6.160 nm, and specific surface area of 412.3 m2 g−1. Among the catalysts tested, Pd/HAC demonstrated the best catalytic performance, yielding 27.05 wt% liquid product (6.63 wt% gasoline; 17.6 wt% diesel oil). Impregnation of HAC with Pd enhanced catalytic properties by increasing the specific surface area to 524.0 m2 g−1 and acidity to 20.37 mmol g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang F, Xu J, Jiang J, Liu P, Li F, Ye J, Zhou M (2018) Hydrotreatment of vegetable oil for green diesel over activated carbon supported molybdenum carbide catalyst. Fuel 216:738–746

    Article  CAS  Google Scholar 

  2. Chuah LF, Yusup S, Aziz ARA, Klemeš JJ, Bokhari A, Abdullah MZ (2016) Influence of fatty acids content in non-edible oil for biodiesel properties. Clean Technol Envir 18(2):473–482

    Article  CAS  Google Scholar 

  3. Kartika IA, Cerny M, Vandenbossche V, Rigal L, Sablayrolles C, Vialle C, Suparno O, Ariono D, Evon P (2018) Direct Calophyllum oil extraction and resin separation with a binary solvent of n-hexane and methanol mixture. Fuel 221:159–164

    Article  Google Scholar 

  4. Marso TMM, Kalpage CS, Udugala-Ganehenege MY (2017) Metal modified graphene oxide composite catalyst for the production of biodiesel via pre-esterification of Calophyllum inophyllum oil. Fuel 199:47–64

    Article  CAS  Google Scholar 

  5. Arumugam A, Ponnusami V (2019) Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: an overview. Renew Energy 131:459–471

    Article  CAS  Google Scholar 

  6. Kartika IA, Bernia OTO, Sailah I, Prakoso T, Purwanto YA (2019) A binary solvent for the simultaneous Calophyllum oil-resin extraction and purification. Res Agr Eng 65(2):63–69

    Article  CAS  Google Scholar 

  7. Koohsaryan E, Anbia M (2016) Nanosized and hierarchical zeolites: a short review. Chin J Catal 37(4):447–467

    Article  CAS  Google Scholar 

  8. Li K, Valla J, Garcia-Martinez J (2014) Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. Chem Cat Chem 6(1):46–66

    CAS  Google Scholar 

  9. Feliczak-Guzik A (2018) Hierarchical zeolites: synthesis and catalytic properties. Micropor Mesopor Mat 259:33

    Article  CAS  Google Scholar 

  10. Veiga S, Bussi J (2017) Steam reforming of crude glycerol over nickel supported on activated carbon. Energy Convers Manag 141:79–84

    Article  CAS  Google Scholar 

  11. Nabais JMV, Laginhas CEC, Carrott PJM, Carrott MR (2011) Production of activated carbons from almond shell. Fuel Process Technol 92(2):234–240

    Article  CAS  Google Scholar 

  12. Liu WJ, Jiang H, Yu HQ (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17(11):4888–4907

    Article  CAS  Google Scholar 

  13. Maneerung T, Liew J, Dai Y, Kawi S, Chong C, Wang CH (2016) Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresour Technol 200:350–359

    Article  CAS  Google Scholar 

  14. Bouchelta C, Medjram MS, Bertrand O, Bellat JP (2008) Preparation and characterization of activated carbon from date stones by physical activation with steam. J Anal Appl Pyrol 82(1):70–77

    Article  CAS  Google Scholar 

  15. Nor NM, Lau LC, Lee KT, Mohamed AR (2013) Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng 1(4):658–666

    Article  Google Scholar 

  16. Largitte L, Brudey T, Tant T, Dumesnil PC, Lodewyckx P (2019) Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Micropor Mesopor Mater 219:265–275

    Article  Google Scholar 

  17. Adam M, Strubel P, Borchardt L, Althues H, Dörfler S, Kaskel S (2015) Trimodal hierarchical carbide-derived carbon monoliths from steam- and CO2-activated wood templates for high rate lithium sulfur batteries. J Mater Chem A 3(47):24103–24111

    Article  CAS  Google Scholar 

  18. Pongsendana M, Trisunaryanti W, Artanti FW, Falah II (2017) Hydrocracking of waste lubricant into gasoline fraction over CoMo catalyst supported on mesoporous carbon from bovine bone gelatin. Korean J Chem Eng 34(10):2591–2596

    Article  CAS  Google Scholar 

  19. Fuentes-Ordóñez EG, Salbidegoitia JA, González-Marcos MP, González-Velasco JR (2016) Mechanism and kinetics in catalytic hydrocracking of polystyrene in solution. Polym Degrad Stabil 124:51–59

    Article  Google Scholar 

  20. Al Alwan B, Salley SO, Ng KYS (2014) Hydrocracking of DDGS corn oil over transition metal carbides supported on Al-SBA-15: effect of fractional sum of metal electronegativities. Appl Catal A 485:58–66

    Article  CAS  Google Scholar 

  21. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42

    Article  CAS  Google Scholar 

  22. Adams BD, Chen A (2011) The role of palladium in a hydrogen economy. Mater Today 14(6):282–289

    Article  CAS  Google Scholar 

  23. Trisunaryanti W, Triyono T, Armunanto R, Hastuti LP, Ristiana DD, Ginting RV (2018) Hydrocracking of α-cellulose Using Co, Ni, and Pd supported on mordenite catalysts. Indones J Chem 18(1):166–172

    Article  CAS  Google Scholar 

  24. Zeinalipour-Yazdi CD, Cooksy AL, Efstathiou AM (2008) CO adsorption on transition metal clusters: trends from density functional theory. Surf Sci 602(10):1858–1862

    Article  CAS  Google Scholar 

  25. Wijaya DP, Trisunaryanti W, Dewi K, Marsuki MF (2018) Synthesis and Characterization of K2O/MCM-41 (mobil composition of matter no 41) from Lapindo mud by sonochemical method for transesterification catalyst of used cooking oil. Orient J Chem 34(4):1847–1853

    Article  CAS  Google Scholar 

  26. Ju YW, Oh GY (2017) Behavior of toluene adsorption on activated carbon nanofibers prepared by electrospinning of a polyacrylonitrile-cellulose acetate blending solution. Korean J Chem Eng 34(10):2731–2737

    Article  CAS  Google Scholar 

  27. Kim MY, Kim JK, Lee ME, Lee S, Choi M (2017) Maximizing biojet fuel production from triglyceride: importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps. ACS Catal 7(9):6256–6267

    Article  CAS  Google Scholar 

  28. Trisunaryanti W, Suarsih E, Falah II (2019) Well-dispersed nickel nanoparticles on the external and internal surfaces of SBA-15 for hydrocracking of pyrolyzed α-cellulose. RSC Adv 9(3):1230–1237

    Article  CAS  Google Scholar 

  29. Trisunaryanti W, Larasati S, Bahri S, Ni’mah YL, Efiyanti L, Amri K, Nuryanto R, Sumbogo SD, (2019) Performance comparison of Ni-Fe loaded on NH2-functionalized mesoporous silica and beach sand in the hydrotreatment of waste palm cooking oil. J Environ Chem Eng 8(6):104477–104490

    Article  Google Scholar 

  30. Anand M, Farooqui SA, Kumar R, Joshi R, Kumar R, Sibi MG, Singh H, Sinha AK (2016) Kinetics, thermodynamics and mechanisms for hydroprocessing of renewable oils. App Catal A 516:144–152

    Article  CAS  Google Scholar 

  31. Trisunaryanti W, Mukti RR, Kartika IA, Firda PBD, Sumbogo SD, Prasetyoko D, Bahruji H (2020) Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. J Energy Inst 93(6):2238–2246

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UGM, UNAIR, ITB, and IPB under a grant issued by the Indonesian Collaboration Research (RKI) 2019 (Contract No. 631/UN1/DITLIT/DIT-LIT/LT/2019). The authors would like to thank Enago (www.enago.com) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satriyo Dibyo Sumbogo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trisunaryanti, W., Sumbogo, S.D., Mukti, R.R. et al. Performance of low-content Pd and high-content Co, Ni supported on hierarchical activated carbon for the hydrotreatment of Calophyllum inophyllum oil (CIO). Reac Kinet Mech Cat 134, 259–272 (2021). https://doi.org/10.1007/s11144-021-02060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02060-2

Keywords

Navigation