Skip to main content
Log in

Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Cu2O films were prepared using an improved solution immersion method, whereas ZnO/Cu2O films were prepared using an electrodeposition method. Then, the pure Cu2O film electrodes and ZnO/Cu2O film electrodes were used to reduce CO2 to CH3OH. The crystal structure, morphology, particle size, and specific surface area of pure Cu2O films prepared under different immersion times and ZnO/Cu2O films prepared under different deposition times and Zn2+ concentrations were analyzed using X-ray diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller analysis. The electrolytic activity of the pure Cu2O film electrodes and ZnO/Cu2O film electrodes were studied. Under the same reaction conditions, the ZnO/Cu2O film electrode with the Zn2+ concentration of 0.05 M and the deposition time of 30 min had the highest total CH3OH yield of 315.656 μmol/cm2 and the fastest formation rate of 52.609 μmol/(cm2 h), and its faradaic efficiency was 45%, which was remarkably higher than that of pure Cu2O film electrodes under the same reaction conditions. This study highlighted that ZnO nanoparticles had a very good promotion of electrolytic CO2 reduction on Cu2O film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. Szulejko JE, Kumar P, Deep A, Kim K-H (2017) Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmos Pollut Res 8:136–140. https://doi.org/10.1016/j.apr.2016.08.002

    Article  Google Scholar 

  2. Salazar-Villalpando MD (2011) Effect of electrolyte on the electrochemical reduction of CO2. ECS Trans 33:77–88. https://doi.org/10.1149/1.3565504

    Article  CAS  Google Scholar 

  3. Zhang H, Chang X, Chen JG, Goddard WA, Xu B, Cheng M-J, Lu Q (2019) Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat Commun. https://doi.org/10.1038/s41467-019-11292-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43:7995–8048. https://doi.org/10.1039/C4CS00122B

    Article  CAS  PubMed  Google Scholar 

  5. Tan Z, Peng T, Tan X, Wang W, Wang X, Yang Z, Ning H, Zhao Q, Wu M (2020) Controllable synthesis of leaf-like CuO nanosheets for selective CO2 electroreduction to ethylene. ChemElectroChem 7:2020–2025. https://doi.org/10.1002/celc.202000235

    Article  CAS  Google Scholar 

  6. Chen C, Sun X, Lu L, Yang D, Ma J, Zhu Q, Qian Q, Han B (2018) Efficient electroreduction of CO2 to C2 products over B-doped oxide-derived copper. Green Chem 20:4579–4583. https://doi.org/10.1039/C8GC02389A

    Article  CAS  Google Scholar 

  7. Zhu DD, Liu JL, Qiao SZ (2016) Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater 28:3423–3452. https://doi.org/10.1002/adma.201504766

    Article  CAS  PubMed  Google Scholar 

  8. Li D, Liu T, Huang L, Wu J, Li J, Zhen L, Feng Y (2020) Selective CO2-to-formate electrochemical conversion with core–shell structured Cu2O/Cu@C composites immobilized on nitrogen-doped graphene sheets. J Mater Chem A 8:18302–18309. https://doi.org/10.1039/D0TA05620K

    Article  CAS  Google Scholar 

  9. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99. https://doi.org/10.1039/b804323j

    Article  CAS  PubMed  Google Scholar 

  10. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639. https://doi.org/10.1002/anie.200462121

    Article  CAS  Google Scholar 

  11. Albo J, Alvarez-Guerra M, Castaño P, Irabien A (2015) Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem 17:2304–2324. https://doi.org/10.1039/C4GC02453B

    Article  CAS  Google Scholar 

  12. Frese KW, Canfield D (1984) Reduction of CO2 on n-GaAs electrodes and selective methanol synthesis. J Electrochem Soc 131:2518–2522. https://doi.org/10.1149/1.2115351

    Article  CAS  Google Scholar 

  13. Frese KW (1991) Electrochemical reduction of CO2 at intentionally oxidized copper electrodes. J Electrochem Soc 138:3338–3344. https://doi.org/10.1149/1.2085411

    Article  CAS  Google Scholar 

  14. Kaneco S, Iiba K, Ohta K, Mizuno T (1999) Electrochemical CO2 reduction on a copper wire electrode in tetraethylammonium perchlorate methanol at extremely low temperature. Energy Sources 21:643–648. https://doi.org/10.1080/00908319950014588

    Article  CAS  Google Scholar 

  15. Kaneco S, Iiba K, Hiei N-h, Ohta K, Mizuno T, Suzuki T (1999) Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol. Electrochim Acta 44:4701–4706. https://doi.org/10.1016/S0013-4686(99)00262-5

    Article  CAS  Google Scholar 

  16. Kaneco S, Hiei N-h, Xing Y, Katsumata H, Ohnishi H, Suzuki T, Ohta K (2003) High-efficiency electrochemical CO2-to-methane reduction method using aqueous KHCO3 media at less than 273 K. J Solid State Electrochem 7:152–156. https://doi.org/10.1007/s10008-002-0291-6

    Article  CAS  Google Scholar 

  17. Chang T-Y, Liang R-M, Wu P-W, Chen J-Y, Hsieh Y-C (2009) Electrochemical reduction of CO2 by Cu2O-catalyzed carbon clothes. Mater Lett 63:1001–1003. https://doi.org/10.1016/j.matlet.2009.01.067

    Article  CAS  Google Scholar 

  18. Ohya S, Kaneco S, Katsumata H, Suzuki T, Ohta K (2009) Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O. Catal Today 148:329–334. https://doi.org/10.1016/j.cattod.2009.07.077

    Article  CAS  Google Scholar 

  19. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315. https://doi.org/10.1039/C0EE00071J

    Article  CAS  Google Scholar 

  20. Zeng B, Chen X, Ning X, Chen C, Deng W, Huang Q, Zhong W (2013) Electrostatic-assembly three-dimensional CNTs/rGO implanted Cu2O composite spheres and its photocatalytic properties. Appl Surf Sci 276:482–486. https://doi.org/10.1016/j.apsusc.2013.03.120

    Article  CAS  Google Scholar 

  21. Kannan K, Sliem MH, Abdullah AM, Sadasivuni KK, Kumar B (2020) Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction. Catalysts. https://doi.org/10.3390/catal10050549

    Article  Google Scholar 

  22. Liu K, Zhang J, Gao H, Xie T, Wang D (2013) Photocatalytic property of ZnO microrods modified by Cu2O nanocrystals. J Alloy Compd 552:299–303. https://doi.org/10.1016/j.jallcom.2012.10.111

    Article  CAS  Google Scholar 

  23. Ma J, Wang K, Li L, Zhang T, Kong Y, Komarneni S (2015) Visible-light photocatalytic decolorization of Orange II on Cu2O/ZnO nanocomposites. Ceram Int 41:2050–2056. https://doi.org/10.1016/j.ceramint.2014.09.137

    Article  CAS  Google Scholar 

  24. He Z, Xia Y, Tang B, Jiang X, Su J (2016) Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites. Mater Lett 184:148–151. https://doi.org/10.1016/j.matlet.2016.08.020

    Article  CAS  Google Scholar 

  25. Iqbal M, Wang Y, Hu H, He M, Shah AH, Lin L, Li P, Shao K, Woldu AR, He T (2018) Cu2O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO2 photoreduction. Appl Surf Sci 443:209–216. https://doi.org/10.1016/j.apsusc.2018.02.162

    Article  CAS  Google Scholar 

  26. Zhang Y-H, Cai X-L, Li Y-L, Liu M-M, Ding C-L, Chen J-L, Fang S-M (2019) Facile synthesis of hollow p-Cu2O/n-ZnO microspheres with enhanced photocatalytic H2 production. Chem Phys Lett 734:136748. https://doi.org/10.1016/j.cplett.2019.136748

    Article  CAS  Google Scholar 

  27. Zhang F, Li Y-H, Qi M-Y, Tang Z-R, Xu Y-J (2020) Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl Catal B 268:118380. https://doi.org/10.1016/j.apcatb.2019.118380

    Article  CAS  Google Scholar 

  28. Abdolhoseinzadeh A, Sheibani S (2020) Enhanced photocatalytic performance of Cu2O nano-photocatalyst powder modified by ball milling and ZnO. Adv Powder Technol 31:40–50. https://doi.org/10.1016/j.apt.2019.09.035

    Article  CAS  Google Scholar 

  29. Albo J, Sáez A, Solla-Gullón J, Montiel V, Irabien A (2015) Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Appl Catal B 176–177:709–717. https://doi.org/10.1016/j.apcatb.2015.04.055

    Article  CAS  Google Scholar 

  30. Munir S, Varzeghani AR, Kaya S (2018) Electrocatalytic reduction of CO2 to produce higher alcohols. Sustain Energy Fuels 2:2532–2541. https://doi.org/10.1039/C8SE00258D

    Article  CAS  Google Scholar 

  31. Zhu S, Ren X, Li X, Niu X, Wang M, Xu S, Wang Z, Han Y, Wang Q (2021) Core-shell ZnO@Cu2O as catalyst to enhance the electrochemical reduction of carbon dioxide to C2 products. Catalysts. https://doi.org/10.3390/catal11050535

    Article  Google Scholar 

  32. Fernando CAN, de Silva PHC, Wethasinha SK, Dharmadasa IM, Delsol T, Simmonds MC (2002) Investigation of n-type Cu2O layers prepared by a low cost chemical method for use in photo-voltaic thin film solar cells. Renew Energy 26:521–529. https://doi.org/10.1016/S0960-1481(01)00157-4

    Article  CAS  Google Scholar 

  33. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:E45. https://doi.org/10.1149/1.3561636

    Article  CAS  Google Scholar 

  34. Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762. https://doi.org/10.1021/ac60125a006

    Article  CAS  Google Scholar 

  35. Schizodimou A, Kyriacou G (2012) Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim Acta 78:171–176. https://doi.org/10.1016/j.electacta.2012.05.118

    Article  CAS  Google Scholar 

  36. Jia F, Yu X, Zhang L (2014) Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J Power Sources 252:85–89. https://doi.org/10.1016/j.jpowsour.2013.12.002

    Article  CAS  Google Scholar 

  37. Andrews E, Ren M, Wang F, Zhang Z, Sprunger P, Kurtz R, Flake J (2013) Electrochemical reduction of CO2 at Cu Nanocluster/(101̅0) ZnO electrodes. J Electrochem Soc 160:H841–H846. https://doi.org/10.1149/2.105311jes

    Article  CAS  Google Scholar 

  38. Geioushy RA, Khaled MM, Alhooshani K, Hakeem AS, Rinaldi A (2017) Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol. Electrochim Acta 245:456–462. https://doi.org/10.1016/j.electacta.2017.05.185

    Article  CAS  Google Scholar 

  39. Szanyi J, Goodman DW (1991) Methanol synthesis on a Cu(100) catalyst. Catal Lett 10:383–390. https://doi.org/10.1007/BF00769173

    Article  CAS  Google Scholar 

  40. Bailey S, Froment GF, Snoeck JW, Waugh KC (1994) A DRIFTS study of the morphology and surface adsorbate composition of an operating methanol synthesis catalyst. Catal Lett 30:99–111. https://doi.org/10.1007/BF00813676

    Article  CAS  Google Scholar 

  41. Nakamura J, Choi Y, Fujitani T (2003) On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top Catal 22:277–285. https://doi.org/10.1023/A:1023588322846

    Article  CAS  Google Scholar 

  42. Cox DF, Schulz KH (1990) Methanol decomposition on single crystal Cu2O. J Vac Sci Technol A 8:2599–2604. https://doi.org/10.1116/1.576678

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Science and Technology Program of Shaanxi, China (2020JM-081), by the Sichuan Science and Technology Program (No. 2020ZHCG0001), by the National Key Research and Development Program of China (No. 2018YFF0216000), and by the Fundamental Research Funds for Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qulan Zhou.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhou, Q., Qi, J. et al. Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles. Reac Kinet Mech Cat 134, 243–257 (2021). https://doi.org/10.1007/s11144-021-02047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02047-z

Keywords

Navigation