Skip to main content
Log in

Assessment of different kinetic models of carbon dioxide transformation to methanol via hydrogenation, over a Cu/ZnO/Al2O3 catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the work presented here, the feasibility study of the methanol production from pure CO2 and H2 has been conducted. This study focused on investigation of the previous kinetic models used for methanol synthesis by hydrogenation process at different processing conditions such as: pressure, temperature, catalyst loading and molar ratio of H2 to CO2 to select the best one. The results showed that, the combined rate expression containing both CO and CO2 hydrogenation terms would result in the better yield. Besides, it was found that the reactor containing recycle mood ensures a higher efficiency up to 65% methanol yield at the range of (200–250 °C) and 50 bar. The kinetic model based on CO and CO2 hydrogenation along with the proposed configuration showed the reasonable methanol yield in a practical methanol plant as much as 41%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A:

Pre-exponential factor

C:

Concentration (mol/liter)

P:

Total pressure (Pa)

Pj :

Partial pressure of component j (Pa)

GHSV:

Gas hourly space velocity (m3/kgcat h)

bj :

Adsorption constant of component j

Ki :

Equilibrium constant of reaction i

ki :

Kinetic constant of reaction i

nj :

Molar amount of component j

Yj :

Yield amount of component j

R:

Gas constant = 8.314 (J/mol K)

ri :

Reaction rate of component i (mol/s m3)

T:

Temperature (K)

∆H:

Enthalpy change (J/mol)

∆G:

Gibbs energy change (J/mol)

i component:

i (e.g. CO, CO2, H2, CH3OH, H2O)

References

  1. Portha JF, Parkhomenko K, Kobl K, Roger AC, Arab S, Commenge JM, Falk L (2017) Kinetics of methanol synthesis from carbon dioxide hydrogenation over copper-zinc oxide catalysts. Ind Eng Chem Res 56:13133–13145

    Article  CAS  Google Scholar 

  2. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639

    Article  CAS  Google Scholar 

  3. Simakov DSA (2017) Renewable synthetic fuels and chemicals from carbon dioxide, fundamentals, catalysis, design considerations and technological challenges. Springer, Heidelberg

    Google Scholar 

  4. Montebelli A, Visconti CG, Groppi G, Tronconi E, Ferreira C, Kohler S (2013) Enabling small-scale methanol synthesis reactors through the adoption of highly conductive structured catalysts. Catal Today 215:176–185

    Article  CAS  Google Scholar 

  5. Joo OS, Jung K, Moon Il, Rozovskii AY, Lin GI, Han SH, Uhm SJ (1999) Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE Process). Ind Eng Chem Res 38:1808–1812

    Article  CAS  Google Scholar 

  6. Matsushita T, Haganuma T, Fujita D (2011) Process for producing methanol, Mitsui Chemicals Inc. WO2011136345

  7. Shulenberger AM, Jonsson F., Ingolfsson O, Tran KC (2007) Process for producing liquid fuel from carbon dioxide and water. CRI EHF. US20070244208A1

  8. Atsonios K, Panopoulos KD, Kakaras E (2016) Thermocatalytic CO2 hydrogenation for methanol and ethanol production: process improvements. Int J Hydrogen Energy 41:792–806

    Article  CAS  Google Scholar 

  9. Mignard D, Sahibzada M, Duthie JM, Whittington HW (2003) Methanol synthesis from flue-gas CO2 and renewable electricity: a feasibility study. Int J Hydrog Energy 28:455–464

    Article  CAS  Google Scholar 

  10. Harp G, Tran KC, Bergins Ch, Buddenberg T, Drach I, Koytsoumpa EI (2015) Application of power to methanol technology to integrated steelworks for profitability, conversion efficiency, and CO2 reduction, in Conference: 2nd European Steel Technology and Application Days. Duesseldorf, Germany

  11. Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT (2016) Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 284:260–269

    Article  CAS  Google Scholar 

  12. Van-Dal ES, Bouallou C (2013) Design and simulation of a methanol production plant from CO2 hydrogenation. J Clean Prod 57:38–45

    Article  CAS  Google Scholar 

  13. Bussche KMV, Froment GF (1996) A Steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst. J Catal 161:1–10

    Article  Google Scholar 

  14. Fornero EL, Chiavassa DL, Bonivardi AL, Baltanas MA (2011) CO2 capture via catalytic hydrogenation to methanol: thermodynamic limit vs. ‘kinetic limit.’ Catal Today 172:158–165

    Article  CAS  Google Scholar 

  15. Leonzio G, Zondervan E, Foscolo PU (2019) Methanol production by CO2 hydrogenation: analysis and simulation of reactor performance. Int J Hydrog Energy 44:7915–7933

    Article  CAS  Google Scholar 

  16. Gaikwad R, Reymond H, Phongprueksathat N, Rudolf von Rohrb P, Urakawa A (2020) From CO or CO2?: space-resolved insights into high-pressure CO2 hydrogenation to methanol over Cu/ZnO/Al2O3. Catal Sci Technol 10:2763–2768

    Article  CAS  Google Scholar 

  17. Leonov VE, Karavaev MM, Tsybina EN, Petrischeva GS (1973) Methanol synthesis kinetic. Kinetics Katal 14:848

    Google Scholar 

  18. Klier K, Chatikavanij V, Herman RG, Simmons GW (1982) Catalytic synthesis of methanol from COH2: IV. The effects of carbon dioxide. J Catal 74:343–360

    Article  CAS  Google Scholar 

  19. Villa P, Forzattl P, Buzzl-Ferrarls G, Garone G, Pasquon I (1985) Synthesis of alcohols from carbon oxides and hydrogen. 1. Kinetics of the low-pressure methanol synthesis. Ind Eng Chem Process Des Dev 24:12–19

    Article  CAS  Google Scholar 

  20. Takagawa M, Ohsugi M (1987) Study on reaction rates for methanol synthesis from carbon monoxide, carbon dioxide, and hydrogen. J Catal 107:161–172

    Article  CAS  Google Scholar 

  21. Graaf GH, Scholtens H, Stamhuis EJ, Beenackers AACM (1990) Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem Eng Sci 45:773–783

    Article  CAS  Google Scholar 

  22. McNeil MA, Schack CJ, Rinker RG (1989) Methanol synthesis from hydrogen, carbon monoxide and carbon dioxide over a CuO/ZnO/Al2O3 catalyst: II. Development of a phenomenological rate expression. Appl Catal 50:265–285

    Article  CAS  Google Scholar 

  23. Skrzypek J, Lachowska M, Moroz H (1991) Kinetics of methanol synthesis over commercial copper/zinc oxide/alumina catalysts. Chem Eng Sci 46:2809–2813

    Article  CAS  Google Scholar 

  24. Askgaard TS, Norskov JK, Ovesen CV, Stoltze P (1995) A kinetic model of methanol synthesis. J Catal 156:229–242

    Article  CAS  Google Scholar 

  25. Kubota T, Hayakawa I, Mabuse H, Mori K (2001) Kinetic study of methanol synthesis from carbon dioxide and hydrogen. Appl Organomet Chem 15:121–126

    Article  CAS  Google Scholar 

  26. Šetinc M, Levec J (2001) Dynamics of a mixed slurry reactor for the three-phase methanol synthesis. Chem Eng Sci 56:6081–6087

    Article  Google Scholar 

  27. Rozovskii AY, Lin GI (2003) Fundamentals of methanol synthesis and decomposition. Top Catal 22:137–150

    Article  CAS  Google Scholar 

  28. Lim HW, Park MJ, Kang SH, Chae HJ, Bae JW, Jun KW (2009) Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation. Ind Eng Chem Res 48:10448–10455

    Article  CAS  Google Scholar 

  29. Xuecheng Yan HG, Yang D, Qiu S, Yao X (2014) Catalytic hydrogenation of carbon dioxide to fuels. Curr Org Chem 18:1335–1345

    Article  Google Scholar 

  30. Bansode A, Urakawa A (2014) Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products. J Catal 309:66–70

    Article  CAS  Google Scholar 

  31. Makertiharta IGBN, Dharmawijaya PT, Wenten IG (2017) Current progress on zeolite membrane reactor for CO2 hydrogenation. AIP Conference Proceedings 1788: 040001

  32. Struis RPWJ, Stucki S (2001) Verification of the membrane reactor concept for the methanol synthesis. Appl Catal A Gen 216:117–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Samiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiee, L., GhasemiKafrudi, E. Assessment of different kinetic models of carbon dioxide transformation to methanol via hydrogenation, over a Cu/ZnO/Al2O3 catalyst. Reac Kinet Mech Cat 133, 801–823 (2021). https://doi.org/10.1007/s11144-021-02045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02045-1

Keywords

Navigation