Skip to main content
Log in

Performance of HZSM-5 prepared by different methods for methanol to aromatics

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Nanoscale polymer spherical and hollow structure HZSM-5 zeolites are prepared by hydrothermal and desilication–recrystallization methods. In addition, the crystallite size of two types of HZSM-5 can be easily controlled by changing H2O/Si mole ratio. The hollow structure HZSM-5 zeolite is formed, it is due to the 010 crystal plane is the most energetically favorable orientation in silicalite-1 and the Si species is first removed on this crystal plane. The properties of different morphology zeolites were characterized by means of XRD, SEM, TEM, NH3-TPD, N2 isothermal adsorption–desorption and TG, and the catalytic performance of these two types of HZSM-5 in MTA reaction was investigated in a fixed-bed differential reactor. The results showed that the multilevel pore structure and suitable acid strength and more acid density were obtained in the hollow structure HZSM-5 zeolite. Therefore, the hollow HZSM-5 zeolite exhibited that higher catalytic lifetime and selectivity of aromatics than nanoscale polymer spherical HZSM-5 zeolite in MTA reaction. Furthermore, the Al distribution on the 010 crystal plane may change slightly during the process of fabricating hollow mesoporous, which leads to higher selectivity of p-xylene over hollow HZSM-5 than nanoscale polymer spherical HZSM-5 zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bi Y, Wang YL, Chen X et al (2014) Methanol aromatization over HZSM-5 catalysts modified with different zinc salts. Chin J Catal 35:1740–1751

    Article  CAS  Google Scholar 

  2. Zhang N, Xu YR, Xu XL et al (2015) Study on the reaction conditions of methanol to aromatics over Zn/HZSM-5 catalyst. Nat Gas Chem 40:5–9

    CAS  Google Scholar 

  3. Pinilla-Herrero I, Borfecchia E, Holzinger J et al (2018) High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. J Catal 362:146–163

    Article  CAS  Google Scholar 

  4. Wang N, Qian WZ, Shen K et al (2016) Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst. Chem Commun 52:2011–2014

    Article  CAS  Google Scholar 

  5. Zaidi HK, Pant KK (2004) Catalytic conversion of methanol to gasoline rang hydrocarbons. Catal Today 96:155–160

    Article  CAS  Google Scholar 

  6. Baozhai H, Yang Y, Xu YY et al (2016) A review of the direct oxidation of methane to methanol. Chin J Catal 37:1206–1215

    Article  CAS  Google Scholar 

  7. Xin AH, Sun Q (2013) Development progress of methanol to aromatics catalysts. Mod Chem Ind 33(29–32):34

    Google Scholar 

  8. Shen K, Wang N, Qian W et al (2014) Atmospheric pressure synthesis of nanosized ZSM-5 with enhanced catalytic performance for methanol to aromatics reaction. Catal Sci Technol 4:3840–3844

    Article  CAS  Google Scholar 

  9. Li J, Liu S, Zhang H et al (2016) Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction. Chin J Catal 37:308–315

    Article  CAS  Google Scholar 

  10. Wang XX, Zhang T, Zhang JF et al (2014) Synthesis of mesoporous HZnZSM-5 zeolite and its catalytic performance in methanol aromatization. Acta Pet Sin (Pet Process Sect) 30:336–342

    CAS  Google Scholar 

  11. Barber K, Bonino F, Bordiga S et al (2011) Structure–deactivation relationship for ZSM-5 catalysts governed by framework defects. J Catal 280:196–205

    Article  CAS  Google Scholar 

  12. Wang L, Xu LX, Li J et al (2018) Studies on micro-bimodal mesoporous core-shell HZSM-5@BMMs catalyst for methanol to aromatics. Fine Chem 35:1562–1566

    Google Scholar 

  13. Wang Y, Tan L, Tan M et al (2019) Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics. ACS Catal 9:895–901

    Article  CAS  Google Scholar 

  14. Hermann C, Hass J, Etting FF (1987) Effect of the crystal size on the activity of ZSM-5 catalysts in various reaction. Appl Catal A Gen 35:299–310

    Article  Google Scholar 

  15. Wei Z, Xia T, Liu M et al (2015) Alkaline modification of ZSM-5 catalysts for methanol aromatization: the effect of the alkaline concentration. Front Chem Sci Eng 9:450–460

    Article  CAS  Google Scholar 

  16. Bjørgen M, Joensen F, Holm MS et al (2008) Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl Catal A Gen 345:43–50

    Article  CAS  Google Scholar 

  17. Groen JC, Peffer LAA, Moulijn JA et al (2004) Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids Surf A 241:53–58

    Article  CAS  Google Scholar 

  18. Groen JC, Bach T, Ziese U et al (2005) Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J Am Chem Soc 127:10792–10793

    Article  CAS  Google Scholar 

  19. Dai C, Zhang A, Li L et al (2013) Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment. Chem Mater 25:4197–4205

    Article  CAS  Google Scholar 

  20. Shan ZC, Meng XJ, Liu SY et al (2011) Designed synthesis of TS-1 crystals with controllable b-oriented length. Chem Commun 47:1048–1050

    Article  CAS  Google Scholar 

  21. Ma Z, Fu TJ, Wang YJ et al (2019) Silicalite-1 derivational desilication–recrystallization to prepare hollow nano-ZSM-5 and highly mesoporous micro-ZSM-5 catalyst for methanol to hydrocarbons. Ind Eng Chem Res 58(6):2146–2158

    Article  CAS  Google Scholar 

  22. Persson AE, Schoeman BJ, Sterte J et al (1994) The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolite 14:557–567

    Article  CAS  Google Scholar 

  23. Pérez-Ramírez J, Verboekend D, Bonilla A et al (2009) Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Adv Funct Mater 19:3972–3979

    Article  CAS  Google Scholar 

  24. Abelló S, Bonilla A, Pérez-Ramírez J (2009) Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Appl Catal A Gen 364:191–198

    Article  CAS  Google Scholar 

  25. Fojtíková PP, Mintova S, Zukal A et al (2006) Porosity of micro/mesoporous composites. Microporous Mesoporous Mater 92:154–160

    Article  CAS  Google Scholar 

  26. Viswanadham N, Kamble R, Singh M et al (2009) Catalytic properties of nano-sized ZSM-5 aggregates. Catal Today 141:182–186

    Article  CAS  Google Scholar 

  27. Song W, Justice RE, Jones CA et al (2004) Size-dependent properties of nanocrystalline silicalite synthesized with systematically varied crystal sizes. Langmuir ACS J Surf Colloids 20:4696–4702

    Article  CAS  Google Scholar 

  28. Kang QQ (2018) Study on synthesis and modification of SAPO-34 and catalytic performance of butene cracking. https://doi.org/CNKI:SUN:HXGJ.0.2018-04-008

  29. Topsoe NJ, Pedersen K, Derouane EG (1981) Infrared and temperature-programmed desorption study of acidic properties of ZSM-5-type zeolites. J Catal 70:41–42

    Article  CAS  Google Scholar 

  30. Gao Y, Zheng BH, Wu G et al (2016) Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization. RSC Adv 6:83581–83599

    Article  CAS  Google Scholar 

  31. Nawaz Z, Tang XP, Zhang Q et al (2009) SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene. Catal Commu 10:1925–1930

    Article  CAS  Google Scholar 

  32. Dang S, Li SG, Yang CG et al (2019) Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrOx/SAPO-34 bifunctional catalysts. ChemSusChem 12:3582–3591

    Article  CAS  PubMed  Google Scholar 

  33. Drago RS, Webster CE, Mcgilvray JM et al (1998) A multiple-process equilibrium analysis of silica gel and HZSM-5. J Am Chem Soc 120:538–547

    Article  CAS  Google Scholar 

  34. Jung JS, Won Park J, Seo G (2005) Catalytic cracking of n-octane over alkali-treated MFI zeolites. Appl Catal A Gen 288:149–157

    Article  CAS  Google Scholar 

  35. He Y, Liu M, Dai C et al (2013) Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction. Chin J Catal 34:1148–1158

    Article  CAS  Google Scholar 

  36. Lin X, Fan Y, Liu Z et al (2007) A novel method for enhancing on-stream stability of fluid catalytic cracking (FCC) gasoline hydro-upgrading catalyst: post-treatment of HZSM-5 zeolite by combined steaming and citric acid leaching. Catal Today 125:185–191

    Article  CAS  Google Scholar 

  37. Groen JC, Peffer LAA, Moulijin JA et al (2004) Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids Surf A 241:53–58

    Article  CAS  Google Scholar 

  38. Miyake K, Hirota Y, Ono K et al (2016) Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5/silicalite-1 core-shell zeolite catalyst. J Catal 342:63–66

    Article  CAS  Google Scholar 

  39. Zhang J, Qian W, Kong C et al (2015) Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catal 5:2982–2988

    Article  CAS  Google Scholar 

  40. Bleken FL, Janssens TVW, Svelle S et al (2012) Product yield in methanol conversion over ZSM-5 is predominantly independent of coke content. Microporous Mesoporous Mater 164:190–198

    Article  CAS  Google Scholar 

  41. Pérez-Ramírez J, Christensen CH, Egeblad D et al (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37(11):2530–2542

    Article  PubMed  CAS  Google Scholar 

  42. Hu Z, Zhang H, Wang L et al (2014) Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal Sci Technol 4:2891–2895

    Article  CAS  Google Scholar 

  43. Zhang H, Ma Y, Song K et al (2013) Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: effects of accessibility and strength of acid sites. J catal 302:115–125

    Article  CAS  Google Scholar 

  44. Kim J, Choi M, Ryoo R (2010) Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J Catal 269:219–228

    Article  CAS  Google Scholar 

  45. Kunieda T, Kim JH, Niwa M (1999) Source of selectivity of p-xylene formation in the toluene disproportionation over HZSM-5 zeolites. J Catal 188:431–433

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Youth Science and Technology Foundation of Gansu Province (20JR10RA107) and the Youth Teacher Research Group Foundation of Northwest Normal University (NWNU-LKQN-18-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Tian, H., Jiao, J. et al. Performance of HZSM-5 prepared by different methods for methanol to aromatics. Reac Kinet Mech Cat 133, 1045–1060 (2021). https://doi.org/10.1007/s11144-021-02041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02041-5

Keywords

Navigation