Skip to main content
Log in

Kinetic analysis of arginine, glycine and valine on methane (95%)–propane (5%) hydrate formation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The motivation for this study was the potential of arginine, glycine and valine to be examined as promoter or inhibitor on methane (95%)–propane (5%) hydrate formation and the examination of which flow is better for hydrate formation. The experimental outcomes indicated that glycine can be used as inhibitor while valine and arginine can be used as promoters. Rushton turbine experiments had higher values in rates of hydrate formation compared to pitched blade turbines with percentage difference of 4.3% and 4.93% between RT vs PBTU and RT vs PBTD, showing that radial flow creates better conditions for hydrate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sloan ED, Koh C (1998) Clathrate hydrates of natural gases. Mercel Dekker, New York

    Google Scholar 

  2. Ripmeester JA, John ST, Ratcliffe CI, Powell BM (1987) A new clathrate hydrate structure. Nature 325(6100):135–136

    Article  CAS  Google Scholar 

  3. Longinos SN, Longinou DD, Achinas S (2020) Natural gas hydrates: possible environmental issues. Contemporary environmental issues and challenges in era of climate change. Springer, Singapore

    Google Scholar 

  4. Longinos S (2019) Potential environmental challenges for gas hydrates. LAP Lambert Academic Publishing, Beau Basin

    Google Scholar 

  5. Kvenvolden KA (2000) Natural gas hydrate: background and history of discovery. Natural gas hydrate. Springer, Dordrecht

    Google Scholar 

  6. Carson DB, Katz DL (1942) Natural gas hydrates. Trans AIME 146(01):150–158

    Article  Google Scholar 

  7. Sun Y, Jiang S, Li S, Zhang G, Guo W (2019) Growth kinetics of hydrate formation from water–hydrocarbon system. Chin J Chem Eng 27(9):2164–2179

    Article  CAS  Google Scholar 

  8. Meng Q, Liu H, Wang J (2017) A critical review on fundamental mechanisms of spontaneous imbibition and the impact of boundary condition, fluid viscosity and wettability. Adv Geo-Energy Res 1(1):1–17

    Article  Google Scholar 

  9. Li SL, Sun CY, Liu B, Li ZY, Chen GJ, Sum AK (2014) New observations and insights into the morphology and growth kinetics of hydrate films. Sci Rep 4(1):1–6

    Google Scholar 

  10. Li SL, Sun CY, Liu B, Feng XJ, Li FG, Chen LT, Chen GJ (2013) Initial thickness measurements and insights into crystal growth of methane hydrate film. AIChE J 59(6):2145–2154

    Article  CAS  Google Scholar 

  11. Partoon B, Wong NM, Sabil KM, Nasrifar K, Ahmad MR (2013) A study on thermodynamics effect of [EMIM]-Cl and [OH-C2MIM]-Cl on methane hydrate equilibrium line. Fluid Phase Equilib 337:26–31

    Article  CAS  Google Scholar 

  12. Nashed O, Sabil KM, Lal B, Ismail L, Jaafar AJ (2014) Study of 1-(2-hydroxyethyle) 3-methylimidazolium halide as thermodynamic inhibitors. Appl Mech Mater 625:337–340

    Article  CAS  Google Scholar 

  13. Xu CG, Li XS (2014) Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv 4(35):18301–18316

    Article  CAS  Google Scholar 

  14. Anderson FE, Prausnitz JM (1986) Inhibition of gas hydrates by methanol. AIChE J 32(8):1321–1333

    Article  CAS  Google Scholar 

  15. Akhfash M, Arjmandi M, Aman ZM, Boxall JA, May EF (2017) Gas hydrate thermodynamic inhibition with MDEA for reduced MEG circulation. J Chem Eng Data 62(9):2578–2583

    Article  CAS  Google Scholar 

  16. Kelland MA (2006) History of the development of low dosage hydrate inhibitors. Energy Fuels 20(3):825–847

    Article  CAS  Google Scholar 

  17. Kvamme BB, Huseby G, Forrisdahl OK (1997) Molecular dynamics simulations of PVP kinetic inhibitor in liquid water and hydrate/liquid water systems. Mol Phys 90(6):979–992

    Article  CAS  Google Scholar 

  18. Kvamme B, Kuznetsova T, Aasoldsen K (2005) Molecular dynamics simulations for selection of kinetic hydrate inhibitors. J Mol Graph Model 23(6):524–536

    Article  CAS  PubMed  Google Scholar 

  19. Ajiro H, Takemoto Y, Akashi M, Chua PC, Kelland MA (2010) Study of the kinetic hydrate inhibitor performance of a series of poly (N-alkyl-N-vinylacetamide) s. Energy Fuels 24(12):6400–6410

    Article  CAS  Google Scholar 

  20. Villano LD, Kommedal R, Fijten MW, Schubert US, Hoogenboom R, Kelland MA (2009) A study of the kinetic hydrate inhibitor performance and seawater biodegradability of a series of poly (2-alkyl-2-oxazoline) s. Energy Fuels 23(7):3665–3673

    Article  CAS  Google Scholar 

  21. Sa JH, Lee BR, Park DH, Han K, Chun HD, Lee KH (2011) Amino acids as natural inhibitors for hydrate formation in CO2 sequestration. Environ Sci Technol 45(13):5885–5891

    Article  CAS  PubMed  Google Scholar 

  22. Roosta H, Dashti A, Mazloumi SH, Varaminian F (2016) Inhibition properties of new amino acids for prevention of hydrate formation in carbon dioxide–water system: experimental and modeling investigations. J Mol Liq 215:656–663

    Article  CAS  Google Scholar 

  23. Bavoh CB, Partoon B, Lal B, Gonfa G, Khor SF, Sharif AM (2017) Inhibition effect of amino acids on carbon dioxide hydrate. Chem Eng Sci 171:331–339

    Article  CAS  Google Scholar 

  24. Prasad PS, Kiran BS (2018) Are the amino acids thermodynamic inhibitors or kinetic promoters for carbon dioxide hydrates? J Nat Gas Sci Eng 52:461–466

    Article  CAS  Google Scholar 

  25. Bavoh CB, Nashed O, Khan MS, Partoon B, Lal B, Sharif AM (2018) The impact of amino acids on methane hydrate phase boundary and formation kinetics. J Chem Thermodyn 117:48–53

    Article  CAS  Google Scholar 

  26. Rad SA, Khodaverdiloo KR, Karamoddin M, Varaminian F, Peyvandi K (2015) Kinetic study of amino acids inhibition potential of glycine and l-leucine on the ethane hydrate formation. J Nat Gas Sci Eng 26:819–826

    Article  CAS  Google Scholar 

  27. Douïeb S, Fradette L, Bertrand F, Haut B (2015) Impact of the fluid flow conditions on the formation rate of carbon dioxide hydrates in a semi-batch stirred tank reactor. AIChE J 61(12):4387–4401

    Article  CAS  Google Scholar 

  28. Longinos SN, Parlaktuna M (2020) The effect of experimental conditions on methane (95%)–propane (5%) hydrate formation. Energies 13(24):6710

    Article  CAS  Google Scholar 

  29. Longinos SN, Parlaktuna M (2021) Kinetic analysis of CO2 hydrate formation by the use of different impellers. React Kinet Mech Catal. https://doi.org/10.1007/s11144-021-01968-z

    Article  Google Scholar 

  30. Longinos SN, Parlaktuna M (2021) Examination of behavior of lysine on methane (95%)–propane (5%) hydrate formation by the use of different impellers. J Pet Explor Prod 11(4):1823–1831

    Google Scholar 

  31. Longinos SN, Parlaktuna M (2021) Are the amino acids inhibitors or promoters on methane (95%)–propane (5%) hydrate formation? React Kinet Mech Catal 132(2):795–809

    Article  CAS  Google Scholar 

  32. Sankari ES, Manimegalai D (2017) Predicting membrane protein types using various decision tree classifiers based on various modes of general PseAAC for imbalanced datasets. J Theor Biol 435:208–217

    Article  CAS  PubMed  Google Scholar 

  33. Lee BI, Kesler MG (1975) A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J 21(3):510–527

    Article  CAS  Google Scholar 

  34. Sa JH, Kwak GH, Lee BR, Park DH, Han K, Lee KH (2013) Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci Rep 3(1):1–7

    Article  Google Scholar 

  35. Partoon B, Malik SNA, Azemi MH, Sabil KM (2013) Experimental investigations on the potential of SDS as low-dosage promoter for carbon dioxide hydrate formation. Asia-Pac J Chem Eng 8(6):916–921

    Article  CAS  Google Scholar 

  36. Sun T, Davies PL, Walker VK (2015) Structural basis for the inhibition of gas hydrates by α-helical antifreeze proteins. Biophys J 109(8):1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. ZareNezhad B, Varaminian F (2013) A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters. Energy Convers Manage 73:144–149

    Article  CAS  Google Scholar 

  38. Longinos SN, Parlaktuna M (2021) Kinetic analysis of dual impellers on methane hydrate formation. Int J Chem React Eng 19(2):155–165

    Article  Google Scholar 

  39. Longinos SN, Parlaktuna M (2021) The effect of experimental conditions on methane hydrate formation by the use of single and dual impellers. React Kinet Mech Catal 132(2):771–794

    Article  CAS  Google Scholar 

  40. Longinos SN, Parlaktuna M (2021) Kinetic analysis of methane–propane hydrate formation by the use of different impellers. ACS Omega 6(2):1636–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vysniauskas A, Bishnoi PR (1983) A kinetic study of methane hydrate formation. Chem Eng Sci 38(7):1061–1072

    Article  CAS  Google Scholar 

  42. Merey S, Longinos SN (2018) Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea. J Pet Sci Eng 168:81–97. https://doi.org/10.1016/j.petrol.2018.05.014

  43. Ribeiro CP, Lage PL (2008) Modelling of hydrate formation kinetics: state-of-the-art and future directions. Chem Eng Sci 63(8):2007–2034

    Article  CAS  Google Scholar 

  44. Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42(11):2647–2658

    Article  CAS  Google Scholar 

  45. Kamali R, Mansoorifar A, Manshadi MD (2014) Effect of baffle geometry on mixing performance in the passive micromixers. Iran J Sci Technol. Trans Mech Eng 38(M2):351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Nik. Longinos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longinos, S.N., Parlaktuna, M. Kinetic analysis of arginine, glycine and valine on methane (95%)–propane (5%) hydrate formation. Reac Kinet Mech Cat 133, 741–751 (2021). https://doi.org/10.1007/s11144-021-02018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02018-4

Keywords

Navigation