Skip to main content

Facile synthesis of TiO2/Chitosan nanohybrid for adsorption-assisted rapid photodegradation of an azo dye in water

Abstract

A series of bifunctional nanohybrids containing different proportions of chitosan and titanium dioxide (TiO2) were prepared through precipitation technique and applied for removal of a model anionic azo dye, Remazol Orange 3R (RO), from aqueous solution. This study reveals the dual benefit of adsorption and photocatalytic degradation of RO by TiO2/Chitosan nanohybrids. Nanohybrid fabricated from 80% TiO2 (w/w) and 20% chitosan (w/w) termed as T0.80CS0.20 removed ∼98.8% RO within only 8 min at pH 2.0 under sunlight irradiation from 60 mg L−1 dye solution. This was mainly due to the simultaneous role of adsorption and photodegradation activities of nanohybrids. The adsorption performance of T0.80CS0.20 was investigated in terms of the Langmuir isotherm under dark and the maximum adsorption capacity of T0.80CS0.20 for RO was found to be 243.9 mg g−1. Electrostatic interaction was suggested as a plausible mechanism for RO adsorption whereas photogenerated holes controlled photocatalytic degradation of RO by producing sufficient quantities of different radical species. In addition, T0.80CS0.20 can be regenerated for removal of RO by simple alkali washing. Therefore, T0.80CS0.20 is recommended as a promising photocatalyst for the removal of RO dye from water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Raman CD, Kanmani S (2016) Textile dye degradation using nano zero valent iron: a review. J Environ Manag 177:341–355

    CAS  Article  Google Scholar 

  3. 3.

    Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366

    CAS  Article  Google Scholar 

  4. 4.

    Alves de Lima RO, Bazo AP, Salvadori DMF, Rech CM, de Palma OD, de AragãoUmbuzeiro G (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res 626:53–60

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Bibi I, Nazar N, Iqbal M, Kamal S, Nawaz H, Nouren S, Safa Y, Jilani K, Sultan M, Ata S, Rehman F, Abbas M (2017) Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Adv Powder Technol 28:2035–2043

    CAS  Article  Google Scholar 

  6. 6.

    Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C 9:171–192

    CAS  Article  Google Scholar 

  7. 7.

    Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Mezohegyi G, van der Zee FP, Font J, Fortuny A, Fabregat A (2012) Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. J Environ Manag 102:148–164

    CAS  Article  Google Scholar 

  9. 9.

    Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93:154–168

    CAS  Article  Google Scholar 

  10. 10.

    Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4697

    CAS  Article  Google Scholar 

  11. 11.

    Sarker M, Shin S, Jeong JH, Jhung SH (2019) Mesoporous metal-organic framework PCN-222(Fe): promising adsorbent for removal of big anionic and cationic dyes from water. Chem Eng J 371:252–259

    CAS  Article  Google Scholar 

  12. 12.

    Ike IA, Lee Y, Hur J (2019) Impacts of advanced oxidation processes on disinfection byproducts from dissolved organic matter upon post-chlor(am)ination: a critical review. Chem Eng J 375:121929

    CAS  Article  Google Scholar 

  13. 13.

    Sarker M, Bhadra BN, Seo PW, Jhung SH (2017) Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5(Co). J Hazard Mater 324:131–138

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    de Souza SMAGU, Bonilla KAS, de Souza AAU (2010) Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J Hazard Mater 179:35–42

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Jo YK, Lee JM, Son S, Hwang S-J (2019) 2D inorganic nanosheet-based hybrid photocatalysts: design, applications, and perspectives. J Photochem Photobiol C 40:150–190

    CAS  Article  Google Scholar 

  16. 16.

    Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Isa MH (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36

    CAS  Article  Google Scholar 

  17. 17.

    Natarajan S, Bajaj HC, Tayade RJ (2018) Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci 65:201–222

    Article  Google Scholar 

  18. 18.

    Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Env Sci Tec 42:251–325

    Article  CAS  Google Scholar 

  19. 19.

    Yusuff AS, Bello KA, Azeez TM (2020) Photocatalytic degradation of an anionic dye in aqueous solution by visible light responsive zinc oxide-termite hill composite. Reac Kinet Mech Cat 131:537–554

    CAS  Article  Google Scholar 

  20. 20.

    Ebrahimian J, Mohsennia M, Khayatkashani M (2020) Photocatalytic-degradation of organic dye and removal of heavy metal ions using synthesized SnO2 nanoparticles by Vitexagnus-castus fruit viaa green route. Mater Lett 263:127255

    CAS  Article  Google Scholar 

  21. 21.

    Youcef R, Benhadji A, Zerrouki D, Fakhakh N, Djelal H, Ahmed MT (2021) Electrochemical synthesis of CuO–ZnO for enhanced the degradation of Brilliant Blue (FCF) by sono-photocatalysis and sonocatalysis: kinetic and optimization study. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-021-01961-6

    Article  Google Scholar 

  22. 22.

    Al-Amin M, Dey SC, Rashid TU, Ashaduzzaman M, Shamsuddin SM (2016) Solar assisted photocatalytic degradation of reactive azo dyes in presence of anatase titanium dioxide. Int J Latest Res Eng Technol 2(3):14–21

    Google Scholar 

  23. 23.

    Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C 15:1–20

    CAS  Article  Google Scholar 

  24. 24.

    Paul SC, Dey SC, Molla MAI, Islam MS, Debnath S, Miah MY, Ashaduzzaman M, Sarker M (2021) Nanomaterials as electrocatalyst for hydrogen and oxygen evolution reaction: exploitation of challenges and current progressions. Polyhedron 193:114871

    CAS  Article  Google Scholar 

  25. 25.

    Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328:8–26

    CAS  Article  Google Scholar 

  26. 26.

    Ajmala A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026

    Article  CAS  Google Scholar 

  27. 27.

    Saravanan R, Aviles J, Gracia F, Mosquera E, Gupta VK (2018) Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. Int J Biol Macromol 109:1239–1245

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Hasan AKMM, Dey SC, Rahman MM, Zakaria AM, Sarker M, Ashaduzzaman M, Shamsuddin SM (2020) A kaolinite/TiO2/ZnO-based novel ternary composite for photocatalytic degradation of anionic azo dyes. Bull Mater Sci 43:27

    CAS  Article  Google Scholar 

  29. 29.

    Sarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81

    CAS  Article  Google Scholar 

  30. 30.

    Dutt A, Hanif MA, Nadeem F, Bhatti HN (2020) A review of advances in engineered composite materials popular for wastewater treatment. J Environ Chem Eng 8:104073–104112

    CAS  Article  Google Scholar 

  31. 31.

    Yang M-Q, Zhang N, Xu Y-J (2013) Synthesis of Fullerene–, Carbon Nanotube–, and Graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl Mater Interfaces 5(3):1156–1164

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS (2020) Chitosan as an environment friendly biomaterial—a review on recent modifications and applications. Int J Biol Macromol 150:1072–1083

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Lang X, Wang T, Sun M, Chen X, Liu Y (2020) Advances and applications of chitosan-based nanomaterials as oral delivery carriers: a review. Int J Biol Macromol 154:433–445

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Habiba U, Islam MS, Siddique TA, Afifia AM, Ang BC (2016) Adsorption and photocatalytic degradation of anionic dyes on Chitosan/PVA/Na–Titanate/TiO2 composites synthesized by solution casting method. Carbohydr Polym 149:317–331

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Etshindo LA, Tamiasso-Martinhon P, Sousa C, de Araujo LRR, Rocha AS (2021) Influence of substrate on the activity of composite film of TiO2 and chitosan for photodecolorization of a reactive dye solution. Reac Kinet Mech Cat 132:547–562

    CAS  Article  Google Scholar 

  36. 36.

    Aadnan I, Zegaoui O, Daou I, da Silva JCGE (2020) Synthesis and physicochemical characterization of a ZnO-Chitosan hybrid-biocomposite used as an environmentally friendly photocatalyst under UV-A and visible light irradiations. J Environ Chem Eng 8:104260

    CAS  Article  Google Scholar 

  37. 37.

    Zainal Z, Hui LK, Hussein MZ, Abdullah AH (2009) Characterization of TiO2–chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. J Hazard Mat 164:138–145

    CAS  Article  Google Scholar 

  38. 38.

    Zhu H, Jiang R, Fu Y, Guan Y, Yao J, Xiao L, Zeng G (2012) Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286:41–48

    CAS  Article  Google Scholar 

  39. 39.

    Siripatrawan U, Kaewklin P (2018) Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll 84:125–134

    CAS  Article  Google Scholar 

  40. 40.

    Ahmed MA, Abdelbar NM, Mohamed AA (2018) Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of Rose Bengal from wastewater. Int J Biol Macromol 107:1046–1053

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Farzana MH, Meenakshi S (2015) Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr (VI). Int J Biol Macromol 72:1265–1271

    Article  CAS  Google Scholar 

  42. 42.

    Monvisade P, Siriphannon P (2009) Chitosan intercalated montmorillonite: preparation, characterization and cationic dye adsorption. Appl Clay Sci 42:427–431

    CAS  Article  Google Scholar 

  43. 43.

    Huang T, Shao Y-W, Zhang Q, Deng Y-F, Liang Z-X, Guo F-Z, Li P-C, Wang Y (2019) Chitosan-cross-linked graphene oxide/carboxymethyl cellulose aerogel globules with high structure stability in liquid and extremely high adsorption ability. ACS Sustain Chem Eng 7:8775–8788

    CAS  Article  Google Scholar 

  44. 44.

    Jawad AH, Mubarak NSA, Abdulhameed AS (2020) Tunable Schiff’s base-cross-linked chitosan composite for the removal of reactive red 120 dye: adsorption and mechanism study. Int J Biolmacromol 142:732–741

    CAS  Article  Google Scholar 

  45. 45.

    Masilompane TM, Chaukura N, Mishra SB, Mishra AK (2018) Chitosan-lignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution. Int J Biol Macromol 120:1659–1666

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Neto CDT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohyd Poly 62:97–103

    CAS  Article  Google Scholar 

  47. 47.

    Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX (2005) Biopolymer chitosan/montmorillonitenano composites: preparation and characterization. Polym Degrad Stabil 90:123–131

    CAS  Article  Google Scholar 

  48. 48.

    Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644

    CAS  Article  Google Scholar 

  49. 49.

    Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5:721–729

    CAS  Article  Google Scholar 

  50. 50.

    Muniandy SS, Kaus NHM, Jiang Z-T, Altarawneh M, Lee HL (2017) Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities. RSC Adv 7:48083–48094

    CAS  Article  Google Scholar 

  51. 51.

    Bouyahmed F, Cai M, Reinert L, Duclaux L, Dey RK, Benyoucef H, Lahcini M, Muller F, Delpeux-Ouldriane S (2018) A wide adsorption range hybrid material based on chitosan, activated carbon and montmorillonite for water treatment. C 4:35

    Google Scholar 

  52. 52.

    Kavitha K, Sutha S, Prabhu M, Rajendran V, Jayakumar T (2013) In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydr Polym 93:731–739

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Anaya-Esparza LM, Ruvalcaba-Gómez JM, Maytorena-Verdugo CI, González-Silva N, Romero-Toledo R, Aguilera-Aguirre S, Pérez-Larios A, Montalvo-González E (2020) Chitosan-TiO2: a versatile hybrid composite. Materials 13:811

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  54. 54.

    Mondol B, Sarker A, Shareque AM, Dey SC, Islam MT, Das AK, Shamsuddin SM, Molla MAI, Sarker M (2021) Preparation of activated carbon/TiO2 nanohybrids for photodegradation of reactive red-35 dye using sunlight. Photochem 1(1):54–66

    Article  Google Scholar 

  55. 55.

    Farzana MH, Meenakshi S (2014) Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Ind Eng Chem Res 53:55–63

    CAS  Article  Google Scholar 

  56. 56.

    Yang HG, Li CZ, Gu HC, Fang TN (2001) Rheological behavior of titanium dioxide suspensions. J Colloid Interface Sci 236:96–103

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Ramanery FP, Mansur AAP, Mansur HS (2013) One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates. Nanoscale Res Lett 8:512

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Dey SC, Moztahida M, Sarker M, Ashaduzzaman M, Shamsuddin SM (2019) pH-triggered interfacial interaction of kaolinite/chitosan nanocomposites with anionic azo dye. J Compos Sci 3:39

    CAS  Article  Google Scholar 

  59. 59.

    Xie Y, Li S, Wang F, Liu G (2010) Removal of perchlorate from aqueous solution using protonated cross-linked chitosan. Chem Eng J 156:56–63

    CAS  Article  Google Scholar 

  60. 60.

    Benkhaya S, Mrabet S, Harfi AE (2020) Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6:e03271

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Chen C-Y, Cheng M-C, Chen A-H (2012) Photocatalytic decolorization of Remazol Black 5 and Remazol Brilliant Orange 3R by mesoporous TiO2. J Environ Manag 102:125–133

    CAS  Article  Google Scholar 

  62. 62.

    Gümüş D, Akbal F (2011) Photocatalytic degradation of textile dye and wastewater. Water Air Soil Pollut 216:117–124

    Article  CAS  Google Scholar 

  63. 63.

    Soutsas K, Karayannis V, Poulios I, Riga A, Ntampegliotis K, Spiliotis X, Papapolymerou G (2010) Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. Desalination 250:345–350

    CAS  Article  Google Scholar 

  64. 64.

    Jonstrup M, Wärjerstam M, Murto M, Mattiasson B (2010) Immobilisation of TiO2 for combined photocatalytic-biological azo dye degradation. Water Sci Technol 62:525–531

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Basturk E, Işık M, Karatas M (2019) Removal of aniline (Methylene Blue) and azo (Reactive Red 198) dyes by photocatalysis via nano TiO2. Desalination Water Treat 143:306–313

    CAS  Article  Google Scholar 

  66. 66.

    Ahmad MA, Rahman NK (2011) Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon. Chem Eng J 170:154–161

    CAS  Article  Google Scholar 

  67. 67.

    Mamba G, Mamo MA, Mbianda XY, Mishra AK (2014) Nd, N, S-TiO2 decorated on reduced graphene Oxide for a visible light active photocatalyst for dye degradation: comparison to its MWCNT/Nd, N, S-TiO2 analogue. Ind Eng Chem Res 53:14329–14338

    CAS  Article  Google Scholar 

  68. 68.

    Adamu H, McCue AJ, Taylor RSF, Manyar HG, Anderson JA (2019) Influence of pretreatment on surface interaction between Cu and anatase-TiO2 in the simultaneous photoremediation of nitrate and oxalic acid. J Environ Chem Eng 7:103029

    CAS  Article  Google Scholar 

  69. 69.

    Molla MAI, Furukawa M, Tateishi I, Katsumata H, Kaneco S (2019) Fabrication of Ag-doped ZnO by mechanochemical combustion method and their application into photocatalytic Famotidine degradation. J Environ Sci Health Part A 54:914–923

    CAS  Article  Google Scholar 

  70. 70.

    Venkatesh D, Pavalamalar S, Anbalagan K (2019) Selective photodegradation on dual dye system by recoverable nano SnO2 photocatalyst. J Inorg Organomet Polym 29:939–953

    CAS  Article  Google Scholar 

  71. 71.

    Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5(1):145–269

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mithun Sarker.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 737 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sultana, T., Dey, S.C., Molla, M.A.I. et al. Facile synthesis of TiO2/Chitosan nanohybrid for adsorption-assisted rapid photodegradation of an azo dye in water. Reac Kinet Mech Cat 133, 1121–1139 (2021). https://doi.org/10.1007/s11144-021-02009-5

Download citation

Keywords

  • TiO2
  • Chitosan
  • Dye
  • Photodegradation
  • Nanohybrids