Skip to main content
Log in

Effect of plasma pretreatment of Co–Cu–B catalyst on hydrogen generation from sodium borohydride methanolysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work reports the preparation and catalytic use of Co–Cu–B nanoparticles, as catalyst for hydrogen generation from the methanolysis of sodium borohydride (NaBH4). An inexpensive and useful catalyst was characterized using a combination of advanced analytical methods including by X-ray diffraction, energy dispersive X-ray spectroscopy, F-TIR analysis, scanning electron microscopy and Brunauer–Emmett–Teller to produce hydrogen from NaBH4 in the reaction with methanol. Basically, after the synthesis of the catalysts, catalytic activity enhancement experiments were carried out by plasma and microwave irradiation. It was determined that the catalyst that is irritiated with plasma is more active on the hydrogen production rate.". The maximum hydrogen production rate in the presence of 2.5 wt% NaBH4 was 270 mL g−1 min−1 for catalyst irradiated in the plasma. Our report also includes the comparison of kinetic study of the catalytic methanolysis of NaBH4 depending on irritated and non-irritable Co–Cu–B catalyst in plasma medium. It was observed that the activation energy of the catalyst irradiated in the plasma (Ea = 10.835 kJ mol−1) was significantly lower than the non-irritable catalyst (Ea = 68.18 kJ mol−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaninski MPM, Nikolic VM, Tasic GS, Rakocevic ZL (2009) Int J Hydrogen Energy 34:703–709

    Article  CAS  Google Scholar 

  2. Liu BH, Li Q (2008) Int J Hydrogen Energy 33:7385–7391

    Article  CAS  Google Scholar 

  3. Biniwale RB, Rayalu S, Devotta S, Ichikawa M (2008) Int J Hydrogen Energy 33:360–365

    Article  CAS  Google Scholar 

  4. Kazici HC, Yildiz F, Izgi MS, Ulas B, Kivrak H (2019) Int J Hydrogen Energy 44:10561–10572

    Article  CAS  Google Scholar 

  5. Sahiner N, Yasar AO (2016) Ind Eng Chem Res 55:11245–11252

    Article  CAS  Google Scholar 

  6. Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H (2002) Int J Hydrogen Energy 27:1029–1034

    Article  CAS  Google Scholar 

  7. Xu DY, Zhang HM, Ye W (2007) Catal Commun 8:1767–1771

    Article  CAS  Google Scholar 

  8. Pena-Alonso R, Sicurelli A, Callone E, Carturan G, Raj R (2007) J Power Sources 165:315–323

    Article  CAS  Google Scholar 

  9. Shi L, Xie W, Jian Z, Liao X, Wang Y (2019) Int J Hydrogen Energy 44:17954–17962

    Article  CAS  Google Scholar 

  10. Izgi MS, Şahin Ö, Erhan O, Horoz S (2017) Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7:151–160

    Google Scholar 

  11. Patel N, Fernandes R, Miotello A (2010) J Catal 271:315–324

    Article  CAS  Google Scholar 

  12. Izgi MS, Ödemiş Ö, Şahin Ö, Cafer S (2016) Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi 4:55–64

    Google Scholar 

  13. Xu DY, Dai P, Liu XM, Cao CQ, Guo QJ (2008) J Power Sources 182:616–620

    Article  CAS  Google Scholar 

  14. Izgi MS, Baytar O, Şahin Ö, Horoz S (2019) 14:1005–1012

    Google Scholar 

  15. Izgi MS, Sahin O, Saka C (2019) Mater Manuf Proces 34:1620–1626

    Article  CAS  Google Scholar 

  16. Wang Y, Meng W, Wang D, Wang Z, Zou K, Cao Z, Zhang K, Wu S, Li G (2019) Int J Hydrogen Energy 44:23267–23276

    Article  CAS  Google Scholar 

  17. Eom K, Cho K, Kwon H (2008) J Power Sources 180:484–490

    Article  CAS  Google Scholar 

  18. Dai HB, Liang Y, Wang P, Cheng HM (2008) J Power Sources 177:17–23

    Article  CAS  Google Scholar 

  19. Li Q, Kim H (2012) Fuel Process Technol 100:43–48

    Article  CAS  Google Scholar 

  20. Şahin Ö, İzgi MS, Onat E, Saka C (2016) Int J Hydrogen Energy 41:2539–2546

    Article  CAS  Google Scholar 

  21. Mitov M, Rashkov R, Atanassov N, Zielonka A (2007) J Mater Sci 42:3367–3372

    Article  CAS  Google Scholar 

  22. Dai HB, Liang Y, Wang P, Yao XD, Rufford T, Lu M, Cheng HM (2008) Int J Hydrogen Energy 33:4405–4412

    Article  CAS  Google Scholar 

  23. Fernandes R, Patel N, Miotello A, Jaiswal R, Kothari DC (2012) Int J Hydrogen Energy 37:2397–2406

    Article  CAS  Google Scholar 

  24. Chamoun R, Demirci UB, Cornu D, Zaatar Y, Khoury A, Khoury R, Miele P (2010) Appl Surf Sci 256:7684–7691

    Article  CAS  Google Scholar 

  25. Liang Y, Dai HB, Ma LP, Wang P, Cheng HM (2010) Int J Hydrogen Energy 35:3023–3028

    Article  CAS  Google Scholar 

  26. Sahin O, Kaya M, Izgi MS, Saka C (2015) Energy Sources Part A 37:462–467

    Article  CAS  Google Scholar 

  27. Izgi MS (2016) Energy Sources Part A 38:2590–2597

    Article  CAS  Google Scholar 

  28. Izgi MS, Sahin O, Odemis O, Saka C (2018) Mater Manuf Process 33:196–201

    Article  CAS  Google Scholar 

  29. Baytar O, Izgi MS, Horoz S, Sahin O, Nar S (2019) Dig J Nanomater Biostruct 14:673–681

    Google Scholar 

  30. Kazici HC, Salman F, Izgi MS, Sahin O (2020) J Electron Mater 49:3634–3644

    Article  CAS  Google Scholar 

  31. Rakap M, Kalu EE, Ozkar S (2011) J Alloy Compd 509:7016–7021

    Article  CAS  Google Scholar 

  32. Kazici HC, Yilmaz S, Sahan T, Yildiz F, Er OF, Kivrak H, (2020) Front Energy 14:578–589

    Article  Google Scholar 

  33. Izgi MS, Ece MS, Kazici HC, Sahin O, Onat E (2020) Int J Hydrogen Energy 45:30415–30430

    Article  CAS  Google Scholar 

  34. Jeong SU, Kim RK, Cho EA, Kim HJ, Nam SW, Oh IH, Hong SA, Kim SH (2005) J Power Sources 144:129–134

    Article  CAS  Google Scholar 

  35. Kaufman CM, Sen B (1985) J Chem Soc-Dalton Trans 2:307–313

    Article  Google Scholar 

  36. Liu BH, Li ZP, Suda S (2006) J Alloy Compd 415:288–293

    Article  CAS  Google Scholar 

  37. Zhao JZ, Ma H, Chen J (2007) Int J Hydrogen Energy 32:4711–4716

    Article  CAS  Google Scholar 

  38. Walter JC, Zurawski A, Montgomery D, Thornburg M, Revankar S (2008) J Power Sources 179:335–339

    Article  CAS  Google Scholar 

  39. Li HX, Wu YD, Zhang J, Dai WL, Quao MH (2004) Appl Catal A-General 275:199–206

    Article  CAS  Google Scholar 

  40. Patel N, Fernandes R, Miotello A (2009) J Power Sources 188:411–420

    Article  CAS  Google Scholar 

  41. Fernandes R, Patel N, Miotello A (2009) Appl Catal B-Environ 92:68–74

    Article  CAS  Google Scholar 

  42. Ekinci A, Şahin Ö, Saka C, Avci T (2013) Int J Hydrogen Energy 38:15295–15301

    Article  CAS  Google Scholar 

  43. Tong DG (2020) RSC Adv 10:12354–12354

    Article  CAS  Google Scholar 

  44. Zou JJ, Liu CJ, Zhang YP (2006) Langmuir 22:2334–2339

    Article  CAS  PubMed  Google Scholar 

  45. Izgi MS, Sahin O, Saka C (2016) Int J Hydrogen Energy 41:1600–1608

    Article  CAS  Google Scholar 

  46. Ding XL, Yuan XX, Jia C, Ma ZF (2010) Int J Hydrogen Energy 35:11077–11084

    Article  CAS  Google Scholar 

  47. Yao QL, Yang K, Hong XL, Chen XS, Lu ZH (2018) Catal Sci Technol 8:870–877

    Article  CAS  Google Scholar 

  48. Chen Y, Zhao SF, Liu ZG (2015) Phys Chem Chem Phys 17:14012–14020

    Article  CAS  PubMed  Google Scholar 

  49. Chen WY, Fu WZ, Qian G, Zhang BS, Chen D, Duan XZ, Zhou XG (2020) iScience 23:100879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Izgi MS, Onat E, Kazici HC, Sahin O (2019) Energy Sources Part A. https://doi.org/10.1080/15567036.2019.1677814

    Article  Google Scholar 

  51. İzgi MS, Şahin Ö, Saka C (2016) Int J Hydrogen Energy 41:1600–1608

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by SİÜFEB-94-2017.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Sait İzgi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, Ö., İzgi, M.S., Tayboğa, S. et al. Effect of plasma pretreatment of Co–Cu–B catalyst on hydrogen generation from sodium borohydride methanolysis. Reac Kinet Mech Cat 133, 851–861 (2021). https://doi.org/10.1007/s11144-021-02004-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02004-w

Keywords

Navigation