Skip to main content
Log in

Mechanism of aquacobalamin decomposition in aqueous aerobic solutions containing glucose oxidase and glucose

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, we showed that aquacobalamin (H2OCbl) undergoes decomposition in the presence of glucose oxidase and glucose under aerobic conditions at pH 6.3. This process is contributed by two reactions performed by glucose oxidase, i.e. (i) H2OCbl transformation to cob(II)alamin in the course of the reaction with reduced form of glucose oxidase, and (ii) hydrogen peroxide generation. Further reaction between cob(II)alamin and H2O2 results in macrocycle destruction. Although the reaction between H2OCbl and reduced glucose oxidase is slow, it is accelerated by several phenols and 1,4-benzoquinone. The most pronounced effect of 1,4-benzoquinone and hydroquinone can be explained by the formation of complexes with reduced glucose oxidase, which are more reactive toward H2OCbl than initial reduced glucose oxidase. 1,4-benzoquinone accelerates H2OCbl decomposition in glucose oxidase/glucose system as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Dereven’kov IA, Salnikov DS, Silaghi-Dumitrescu R et al (2016) Redox chemistry of cobalamin and its derivatives. Coord Chem Rev 309:68–83. https://doi.org/10.1016/j.ccr.2015.11.001

    Article  CAS  Google Scholar 

  2. Brown KL (2005) Chemistry and Enzymology of Vitamin B12. Chem Rev 105:2075–2149. https://doi.org/10.1021/cr030720z

    Article  CAS  PubMed  Google Scholar 

  3. Kräutler B (2005) Vitamin B12: chemistry and biochemistry. Biochem Soc Trans 33:806–810. https://doi.org/10.1042/BST0330806

    Article  PubMed  Google Scholar 

  4. Banerjee RV, Matthews RG (1990) Cobalamin-dependent methionine synthase. FASEB J 4:1450–1459. https://doi.org/10.1096/fasebj.4.5.2407589

    Article  CAS  PubMed  Google Scholar 

  5. Bridwell-Rabb J, Drennan CL (2017) Vitamin B12 in the spotlight again. Curr Opin Chem Biol 37:63–70. https://doi.org/10.1016/j.cbpa.2017.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watanabe F, Bito T (2018) Vitamin B12 sources and microbial interaction. Exp Biol Med 243:148–158. https://doi.org/10.1177/1535370217746612

    Article  CAS  Google Scholar 

  7. Watanabe F, Yabuta Y, Tanioka Y, Bito T (2013) Biologically Active Vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects. J Agric Food Chem 61:6769–6775. https://doi.org/10.1021/jf401545z

    Article  CAS  PubMed  Google Scholar 

  8. Rizzo G, Laganà AS, Rapisarda AMC et al (2016) Vitamin B12 among vegetarians: status, assessment and supplementation. Nutrients 8:767. https://doi.org/10.3390/nu8120767

    Article  CAS  PubMed Central  Google Scholar 

  9. Johns PW, Das A, Kuil EM et al (2015) Cocoa polyphenols accelerate vitamin B12 degradation in heated chocolate milk. Int J Food Sci Technol 50:421–430. https://doi.org/10.1111/ijfs.12632

    Article  CAS  Google Scholar 

  10. Bajaj SR, Singhal RS (2020) Degradation kinetics of vitamin B12 in model systems at different pH and extrapolation to carrot and lime juices. J Food Eng 272:109800. https://doi.org/10.1016/j.jfoodeng.2019.109800

    Article  CAS  Google Scholar 

  11. Watanabe F, Katsura H, Abe K, Nakano Y (2000) Effect of light-induced riboflavin degradation on the loss of cobalamin in milk. J Home Econ Jpn 51:231–234. https://doi.org/10.11428/jhej1987.51.231

    Article  CAS  Google Scholar 

  12. Juzeniene A, Nizauskaite Z (2013) Photodegradation of cobalamins in aqueous solutions and in human blood. J Photochem Photobiol B 122:7–14. https://doi.org/10.1016/j.jphotobiol.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad I, Qadeer K, Hafeez A et al (2017) Effect of ascorbic acid on the photolysis of cyanocobalamin and aquocobalamin/hydroxocobalamin in aqueous solution: A kinetic study. J Photochem Photobiol A 332:92–100. https://doi.org/10.1016/j.jphotochem.2016.08.004

    Article  CAS  Google Scholar 

  14. Ahmad I, Hafeez A, Akhter N et al (2012) Effect of Riboflavin on the Photolysis of Cyanocobolamin in Aqueous Solution. Open Anal Chem J 6:22–27. https://doi.org/10.2174/1874065001206010022

    Article  CAS  Google Scholar 

  15. Kalisz HM, Hecht H-J, Schomburg D, Schmid RD (1990) Crystallization and preliminary X-ray diffraction studies of a deglycosylated glucose oxidase from Aspergillus niger. J Mol Biol 213:207–209. https://doi.org/10.1016/S0022-2836(05)80179-2

    Article  CAS  PubMed  Google Scholar 

  16. Hecht HJ, Kalisz HM, Hendle J et al (1993) Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 Å resolution. J Mol Biol 229:153–172. https://doi.org/10.1006/jmbi.1993.1015

    Article  CAS  PubMed  Google Scholar 

  17. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase–an overview. Biotechnol Adv 27:489–501. https://doi.org/10.1016/j.biotechadv.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78:927–938. https://doi.org/10.1007/s00253-008-1407-4

    Article  CAS  PubMed  Google Scholar 

  19. Leskovac V, Trivić S, Wohlfahrt G et al (2005) Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int J Biochem Cell Biol 37:731–750. https://doi.org/10.1016/j.biocel.2004.10.014

    Article  CAS  PubMed  Google Scholar 

  20. Wohlfahrt G, Trivić S, Zeremski J et al (2004) The chemical mechanism of action of glucose oxidase from Aspergillus niger. Mol Cell Biochem 260:69–83. https://doi.org/10.1023/b:mcbi.0000026056.75937.98

    Article  CAS  PubMed  Google Scholar 

  21. Metosh-Dickey CA, Mason RP, Winston GW (1998) Single electron reduction of xenobiotic compounds by glucose oxidase from Aspergillus niger. Free Radic Biol Med 24:155–160. https://doi.org/10.1016/S0891-5849(97)00207-4

    Article  CAS  PubMed  Google Scholar 

  22. Bourdillon C, Denaille C, Moiroux J, Saveant J-M (1993) New insights into the enzymic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates. J Am Chem Soc 115:2–10. https://doi.org/10.1021/ja00054a001

    Article  CAS  Google Scholar 

  23. Nazhat NB, Golding BT, Alastair Johnson GR, Jones P (1989) Destruction of vitamin B12 by reaction with ascorbate: The role of hydrogen peroxide and the oxidation state of cobalt. J Inorg Biochem 36:75–81. https://doi.org/10.1016/0162-0134(89)80014-5

    Article  CAS  Google Scholar 

  24. Salnikov DS, Makarov SV, Koifman OI (2021) The radical versus ionic mechanisms of reduced cobalamin inactivation by tert-butyl hydroperoxide and hydrogen peroxide in aqueous solution. New J Chem 45:535–543. https://doi.org/10.1039/D0NJ04231E

    Article  CAS  Google Scholar 

  25. Swoboda BEP, Massey V (1965) Purification and Properties of the glucose oxidase from Aspergillus niger. J Biol Chem 240:2209–2215. https://doi.org/10.1016/S0021-9258(18)97448-X

    Article  CAS  PubMed  Google Scholar 

  26. Barker HA, Smyth RD, Weissbach H et al (1960) Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5, 6-dimethylbenzimidazole. J Biol Chem 235:480–488

    Article  CAS  PubMed  Google Scholar 

  27. Stich TA, Buan NR, Brunold TC (2004) Spectroscopic and computational studies of Co2+corrinoids: spectral and electronic properties of the biologically relevant base-on and base-off forms of Co2+cobalamin. J Am Chem Soc 126:9735–9749. https://doi.org/10.1021/ja0481631

    Article  CAS  PubMed  Google Scholar 

  28. Salnikov DS, Dereven’kov IA, Makarov SV, Artyushina EN (2011) Reaction of hydroxocobalamin with glucose. Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 54:43–46 ((in Russian))

    CAS  Google Scholar 

  29. Dereven’kov IA, Salnikov DS, Shpagilev NI et al (2012) Reactions of Cobinamide with Glucose and Fructose. Macroheterocycles 5:260–265. https://doi.org/10.6060/mhc2012.120884m

    Article  CAS  Google Scholar 

  30. Schrauzer GN, Deutsch E, Windgassen RJ (1968) The nucleophilicity of vitamin B12s. J Am Chem Soc 90:2441–2442. https://doi.org/10.1021/ja01011a054

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Project No. 19-73-00147) to IAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia A. Dereven’kov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 2075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereven’kov, I.A., Makarov, S.V. & Makarova, A.S. Mechanism of aquacobalamin decomposition in aqueous aerobic solutions containing glucose oxidase and glucose. Reac Kinet Mech Cat 133, 73–84 (2021). https://doi.org/10.1007/s11144-021-01992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01992-z

Keywords

Navigation