Skip to main content
Log in

Synthesis of Ni2P/Ni12P5 composite for a highly efficient hydrogen production from formaldehyde solution

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of nickel phosphide were synthesized by a simple solid phosphidation reaction and used as catalysts for H2 production from formaldehyde solution. It is found that by changing the molar ratio of Ni and P in the raw materials, the composition, size and morphology of the catalyst can be adjusted. The bi-phase Ni2P/Ni12P5 composite exhibits enhanced catalytic activity as compared to that of pure Ni2P. When the molar ratio of Ni to P is 1:0.5, Ni2P/Ni12P5 composite exhibits the superior H2 production activity with a rate of 510 mL/h at room temperature, which is 8.5 times as high as that of pure Ni2P. The possible mechanism of the reaction was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Hou Y, Fu Q, Peng S, Hu Y (2017) Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl Catal B Environ 206:726–733. https://doi.org/10.1016/j.apcatb.2017.01.062

    Article  CAS  Google Scholar 

  2. Li Y, Zhang W, Li H, Yang T, Peng S, Kao C, Zhang W (2020) Ni-B coupled with borate-intercalated Ni(OH)2 for efficient and stable electrocatalytic and photocatalytic hydrogen evolution under low alkalinity. Chem Eng J 394:124928. https://doi.org/10.1016/j.cej.2020.124928

    Article  CAS  Google Scholar 

  3. Li Y, He R, Han P, Hou B, Peng S, Ouyang C (2020) A new concept: volume photocatalysis for efficient H2 generation-using low polymeric carbon nitride as an example. Appl Catal B Environ 279:119379. https://doi.org/10.1016/j.apcatb.2020.119379

    Article  CAS  Google Scholar 

  4. Preti D, Squarcialupi S, Fachinetti G (2009) Aerobic, copper-mediated oxidation of alkaline formaldehyde to fuel-cell grade hydrogen and formate: mechanism and applications. Angew Chem Int Ed 121:4857–4860. https://doi.org/10.1002/ange.200805860

    Article  Google Scholar 

  5. Gahlot S, Sharma PP, Yadav V, Jha PK, Kulshrestha V (2018) Nanoporous composite proton exchange membranes: high conductivity and thermal stability. Colloids Surf A Physicochem Eng Asp 542:8–14. https://doi.org/10.1016/j.colsurfa.2018.01.039

    Article  CAS  Google Scholar 

  6. Boran A, Erkan S, Eroglu I (2019) Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications. Int J Hydrogen Energy 44:18915–18926. https://doi.org/10.1016/j.ijhydene.2018.11.033

    Article  CAS  Google Scholar 

  7. Ashby EC, Doctorovich F, Liotta CL, Neumann HM, Barefield EK, Konda A, Zhang K, Hurley J, Siemer DD (1993) Concerning the formation of hydrogen in nuclear waste. Quantitative generation of hydrogen via a Cannizzaro intermediate. J Am Chem Soc 115(3):1171–1173. https://doi.org/10.1021/ja00056a065

    Article  CAS  Google Scholar 

  8. Kapoor S, Barnabas FA, Sauer-Jr MC, Meisel D, Jonah CD (1995) Kinetics of hydrogen formation from formaldehyde in basic aqueous solutions. J Phys Chem 99(18):6857–6863. https://doi.org/10.1021/j100018a017

    Article  CAS  Google Scholar 

  9. Bi Y, Lu G (2008) Morphological controlled synthesis and catalytic activities of gold nanocrystals. Mater Lett 62:2696–2699. https://doi.org/10.1016/j.matlet.2008.01.021

    Article  CAS  Google Scholar 

  10. Bi Y, Hu H, Li Q, Lu G (2010) Efficient generation of hydrogen from biomass without carbon monoxide at room temperature—formaldehyde to hydrogen catalyzed by Ag nanocrystals. Int J Hydrogen Energy 35:7177–7182. https://doi.org/10.1016/j.ijhydene.2009.12.142

    Article  CAS  Google Scholar 

  11. Feng C, Feng T, Gao S, Tang R, Wang C, Shang N (2017) Pd nanoparticles supported on CeO2 as efficient catalyst for hydrogen generation from formaldehyde solution at room temperature. Appl Organomet Chem 31(12):3889. https://doi.org/10.1002/aoc.3889

    Article  CAS  Google Scholar 

  12. Peng S, Yang Y, Tian J, Gan C, Li Y (2018) In situ loading of Ni2P on Cd0.5Zn0.5S with red phosphorus for enhanced visible lightphotocatalytic H2 evolution. Appl Surf Sci 447:822–828. https://doi.org/10.1016/j.apsusc.2018.04.050

    Article  CAS  Google Scholar 

  13. Peng S, Cao Y, Zhou F, Xu Z, Li Y (2019) CoP decorated with Co3O4 as a cocatalyst for enhanced photocatalytichydrogen evolution via dye sensitization. Appl Surf Sci 487:315–321. https://doi.org/10.1016/j.apsusc.2019.05.113

    Article  CAS  Google Scholar 

  14. Li Y, Cai L, Huang Q, Liu J, Tang R, Zhou W (2020) Highly efficient synthesis of carbon-based molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Nanoscale Res Lett 15:6. https://doi.org/10.1186/s11671-020-3246-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45:1529–1541. https://doi.org/10.1039/C5CS00434A

    Article  CAS  PubMed  Google Scholar 

  16. Lin Y, Zhang J, Pan Y, Liu Y (2017) Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Appl Surf Sci 422:828–837. https://doi.org/10.1016/j.apsusc.2017.06.102

    Article  CAS  Google Scholar 

  17. Wang F, Chen J, Qi X, Yang H, Jiang H, Deng Y, Liang T (2019) Increased nucleation sites in nickel foam for the synthesis of MoP@ Ni3P/NF nanosheets for bifunctional water splitting. Appl Surf Sci 481:1403–1411. https://doi.org/10.1016/j.apsusc.2019.03.200

    Article  CAS  Google Scholar 

  18. Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8:8121–8129. https://doi.org/10.1021/nn5022204

    Article  CAS  PubMed  Google Scholar 

  19. Hu J, Cao X, Zhao X, Chen W, Lu GP, Dan Y, Chen Z (1970) Catalytically active sites on Ni5P4 for efficient hydrogen evolution reaction from atomic scale calculation. Front Chem 7:444. https://doi.org/10.3389/fchem.2019.00444

    Article  CAS  Google Scholar 

  20. Ping L, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc 127:14871–14878. https://doi.org/10.1021/ja0540019

    Article  CAS  Google Scholar 

  21. Popczun EJ, McKone JR, Read CG, Biacchi AJ, WiltroutAM LNS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270. https://doi.org/10.1021/ja403440e

    Article  CAS  PubMed  Google Scholar 

  22. Sun Z, Zhu M, Fujitsuka M, Wang A, Shi C, Majima T (2017) Phase effect of NixPy hybridized with g-C3N4 for photocatalytic hydrogen generation. ACS Appl Mater Interfaces 9:30583–30590. https://doi.org/10.1021/acsami.7b06386

    Article  CAS  PubMed  Google Scholar 

  23. Laursen AB, Patraju KR, Whitaker MJ, Retuerto M, Sarkar T, Yao N, Ramanujachary KV, Greenblatt M, Dismukes GC (2015) Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ Sci 8:1027–1034. https://doi.org/10.1039/C4EE02940B

    Article  CAS  Google Scholar 

  24. Li Y, Peng H, Peng S (2020) Application of Molybdenum phosphide in catalytic hydrogen production in alkaline formaldehyde solution. Chinese Patent ZL201710715999.1.

  25. Layan-Savithra GH, Muthuswamy E, Bowker RH, Carrillo BA, Bussell ME, Brock SL (2013) Rational design of nickel phosphide hydrodesulfurization catalysts: controlling particle size and preventing sintering. Chem Mater 25:825–833. https://doi.org/10.1021/cm302680j

    Article  CAS  Google Scholar 

  26. Muthuswamy E, Layan-Savithra GH, Brock SL (2011) Synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles. ACS Nano 5:2402–2411. https://doi.org/10.1021/nn1033357

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Johnston-Peck AC, Tracy JB (2009) Nickel phosphide nanoparticles with hollow, solid, and amorphous structures. Chem Mater 21:4462–4467. https://doi.org/10.1021/cm901073k

    Article  CAS  Google Scholar 

  28. Panneerselvam A, Malik MA, Afzaal M, O’Brien P, Helliwell M (2008) The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. J Am Chem Soc 130:2420–2421. https://doi.org/10.1021/ja078202j

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Tan Y, Wang X, Dong L, Liu A (2021) Hybrid of NiO-Ni12P5/N-doped carbon nanotubes as non-noble electrocatalyst for efficient hydrogen evolution reaction. Colloids Surf A Physicochem Eng Asp 608:125613. https://doi.org/10.1016/j.colsurfa.2020.125613

    Article  CAS  Google Scholar 

  30. Li P, Zhang Z, Jun S, Zhu Y, Li Y (2019) Controlled synthesis of nickel phosphide nanoparticles with pure-phase Ni2P and Ni12P5 for hydrogenation of nitrobenzene. Reac Kinet Mech Cat 126:453–461. https://doi.org/10.1007/s11144-018-1496-8

    Article  CAS  Google Scholar 

  31. Mi K, Ni Y, Hong J (2011) Solvent-controlled syntheses of Ni12P5 and Ni2P nanocrystals and photo catalyticproperty comparison. J Phys Chem Solids 72:1452–1456. https://doi.org/10.1016/j.jpcs.2011.08.028

    Article  CAS  Google Scholar 

  32. Wu J, Ren S, Hu D, Jiang T, Wang Z, Lei Z, Pan C, Kang S, Shui H (2019) A facile method to synthesize Ni2P catalysts and their catalytic performances in hydrotreating reactions. Int J Chem React Eng 17(2):92. https://doi.org/10.1515/ijcre-2019-0092

    Article  CAS  Google Scholar 

  33. Li Y, Li H, Li Y, Peng S, Hu Y (2018) Fe-B alloy coupled with Fe clusters as an efficient cocatalyst for photocatalytic hydrogen evolution. Chem Eng J 344:506–513. https://doi.org/10.1016/j.cej.2018.03.117

    Article  CAS  Google Scholar 

  34. Pan Y, Liu Y (2016) Crystalline phase and size-controlled synthesis of nickel phosphide nanocrystals. Int J Mater Sci 6:72–76. https://doi.org/10.12783/ijmsci.2016.0601.08

    Article  CAS  Google Scholar 

  35. Wan H, Li L, Chen Y, Gong J, Duan M, Liu C, Zhang J, Wang H (2017) One pot synthesis of Ni12P5 hollow nanocapsules as efficient electrode materials for oxygen evolution reactions and supercapacitor applications. Electrochim Acta 229:380–386. https://doi.org/10.1016/j.electacta.2017.01.169

    Article  CAS  Google Scholar 

  36. Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C (2015) Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A 3:1656–1665. https://doi.org/10.1039/C4TA04867A

    Article  CAS  Google Scholar 

  37. Wang B, Ru Q, Su C, Cheng S, Liu P, Guo Q, Hou H, Su S, Li C (2018) Ni12P5 nanoparticles hinged by carbon nanotubes as 3D mesoporous anodes for lithium-ion batteries. Chem Electro Chem 5:1467–1473. https://doi.org/10.1002/celc.201800223

    Article  CAS  Google Scholar 

  38. Zhang R, Russo PA, Feist M, Amsalem P, Koch N, Pinna N (2017) Synthesis of nickel phosphide electrocatalysts from hybrid metal phosphonates. ACS Appl Mater Interfaces 9:14013–14022. https://doi.org/10.1021/acsami.7b01178

    Article  CAS  PubMed  Google Scholar 

  39. Chang J, Lv Q, Li G, Ge J, Liu C, Xing W (2017) Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis. Appl Catal B Environ 204:486–496. https://doi.org/10.1016/j.apcatb.2016.11.050

    Article  CAS  Google Scholar 

  40. Gu C (2015) Three-dimensional astrocyte-network Ni–P–O compound with superior electrocatalytic activity and stability for methanol oxidation in alkaline environments. J Mater Chem A 3:4669–4678. https://doi.org/10.1039/C4TA06697A

    Article  CAS  Google Scholar 

  41. Sobhani A, Salavati-Niasari M (2016) Simple synthesis and characterization of nickel phosphide nanostructures assisted by different inorganic precursors. J Mater Sci Mater Electron 27:3619–3627. https://doi.org/10.1007/s10854-015-4199-1

    Article  CAS  Google Scholar 

  42. Liu X, Xu L, Zhang B (2014) Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor. J Solid State Chem 212:13–22. https://doi.org/10.1016/j.jssc.2014.01.009

    Article  CAS  Google Scholar 

  43. Xi S, Gou J (2017) Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. J Alloys Compd 713:10–17. https://doi.org/10.1016/j.jallcom.2017.04.170

    Article  CAS  Google Scholar 

  44. Peng C, Kang L, Cao S, Chen Y, Lin Z, Fu W (2015) Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew Chem Int Ed 127:15951–15955. https://doi.org/10.1002/ange.201508113

    Article  Google Scholar 

  45. Chen J, Zhao G, Zhang Y, Duan S, Matsuda K, Zou Y (2019) Metastable phase evolution and nanoindentation behavior of amorphous Ni–Cu–P coating during heat treatment process. J Alloys Compd 805:597–608. https://doi.org/10.1016/j.jallcom.2019.07.068

    Article  CAS  Google Scholar 

  46. Swain CG, Powell AL, Sheppard W, Morgan CR (1979) Mechanism of the Cannizzaro reaction. J Am Chem Soc 101:3576–3583. https://doi.org/10.1021/ja00507a023

    Article  CAS  Google Scholar 

  47. Ou Y, Li S, Bi Y (2015) Performance of highly efficient hydrogen production by alkaline formaldehyde solutions over Pd/BiOCl at room temperature. J Mol Catal (China) 29:441–447

    CAS  Google Scholar 

  48. Bi Y, Lu G (2008) Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature. Int J Hydrogen Energy 33:2225–2232. https://doi.org/10.1016/j.ijhydene.2008.02.064

    Article  CAS  Google Scholar 

  49. Safaei Z, Shiroudi A, Zahedi E, Sillanpää M (2019) Atmospheric oxidation reactions of imidazole initiated by hydroxyl radicals: kinetics and mechanism of reactions and atmospheric implications. Phys Chem Chem Phys 21:8445–8456. https://doi.org/10.1039/C9CP00632J

    Article  CAS  PubMed  Google Scholar 

  50. Walker JF, Chadwick AF (1947) Trioxane as a source of formaldehyde. Ind Eng Chem 39:974–977. https://doi.org/10.1021/ie50452a011

    Article  CAS  Google Scholar 

  51. Krishnan K, Krishnan RS (1966) Raman and infrared spectra of ethyleneglycol. Proc. Indian Acad. Sci. Sect. A 64(2):111–122. https://doi.org/10.1007/bf03047675

    Article  CAS  Google Scholar 

  52. Hu H, Jiao Z, Ye J, Lu G, Bi Y (2014) Highly efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes. Nano Energy 8:103–109. https://doi.org/10.1016/j.nanoen.2014.05.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the projects of National Natural Science Foundation of China (No. 21962010) and the National Key Research and Development Program of China (No. 2018YFB1502004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Wu, L., Huang, M. et al. Synthesis of Ni2P/Ni12P5 composite for a highly efficient hydrogen production from formaldehyde solution. Reac Kinet Mech Cat 133, 229–243 (2021). https://doi.org/10.1007/s11144-021-01984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01984-z

Keywords

Navigation